484 lines
13 KiB
V
484 lines
13 KiB
V
/**********************************************************************
|
|
* path tracing demo
|
|
*
|
|
* Copyright (c) 2019-2020 Dario Deledda. All rights reserved.
|
|
* Use of this source code is governed by an MIT license
|
|
* that can be found in the LICENSE file.
|
|
*
|
|
* This file contains a path tracer example in less of 500 line of codes
|
|
* 3 demo scenes included
|
|
*
|
|
* This code is inspired by:
|
|
* - "Realistic Ray Tracing" by Peter Shirley 2000 ISBN-13: 978-1568814612
|
|
* - https://www.kevinbeason.com/smallpt/
|
|
*
|
|
* Known limitations:
|
|
* - there are some approximation errors in the calculations
|
|
* - to speed-up the code a cos/sin table is used
|
|
* - the full precision code is present but commented, can be restored very easily
|
|
* - an higher number of samples ( > 60) can block the program on higher resolutions
|
|
* without a stack size increase
|
|
* - as a recursive program this code depend on the stack size,
|
|
* for higher number of samples increase the stack size
|
|
* in linux: ulimit -s byte_size_of_the_stack
|
|
* example: ulimit -s 16000000
|
|
* - No OpenMP support
|
|
**********************************************************************/
|
|
import os
|
|
import math
|
|
import rand
|
|
import time
|
|
|
|
const (
|
|
inf = f64(1e+10)
|
|
eps = f64(1e-4)
|
|
f_0 = f64(0.0)
|
|
)
|
|
|
|
/***************************** 3D Vector utility struct **********************/
|
|
struct Vec {
|
|
mut:
|
|
x f64 = f64(0.0)
|
|
y f64 = f64(0.0)
|
|
z f64 = f64(0.0)
|
|
}
|
|
|
|
[inline]
|
|
fn (v Vec) + (b Vec) Vec{
|
|
return Vec{ v.x + b.x , v.y + b.y, v.z + b.z }
|
|
}
|
|
|
|
[inline]
|
|
fn (v Vec) - (b Vec) Vec{
|
|
return Vec{ v.x - b.x , v.y - b.y, v.z - b.z }
|
|
}
|
|
|
|
[inline]
|
|
fn (v Vec) * (b Vec) Vec{
|
|
return Vec{ v.x * b.x , v.y * b.y, v.z * b.z }
|
|
}
|
|
|
|
[inline]
|
|
fn (v Vec) dot (b Vec) f64{
|
|
return v.x * b.x + v.y * b.y + v.z * b.z
|
|
}
|
|
|
|
[inline]
|
|
fn (v Vec) mult_s (b f64) Vec{
|
|
return Vec{ v.x * b , v.y * b, v.z * b }
|
|
}
|
|
|
|
[inline]
|
|
fn (v Vec) cross (b Vec) Vec{
|
|
return Vec{
|
|
v.y * b.z - v.z * b.y,
|
|
v.z * b.x - v.x * b.z,
|
|
v.x * b.y - v.y * b.x
|
|
}
|
|
}
|
|
|
|
[inline]
|
|
fn (v Vec) norm () Vec {
|
|
tmp_norm := f64(1.0) / math.sqrt(v.x * v.x + v.y * v.y + v.z * v.z)
|
|
return Vec{ v.x * tmp_norm , v.y * tmp_norm, v.z * tmp_norm }
|
|
}
|
|
|
|
/*********************************Image***************************************/
|
|
struct Image {
|
|
width int
|
|
height int
|
|
data &Vec
|
|
}
|
|
|
|
fn new_image(w int, h int) Image {
|
|
return Image{
|
|
width: w,
|
|
height: h,
|
|
data: &Vec(vcalloc(sizeof(Vec)*w*h))
|
|
}
|
|
}
|
|
|
|
// write out a .ppm file
|
|
fn (image Image) save_as_ppm(file_name string) {
|
|
npixels := image.width * image.height
|
|
mut f_out := os.create(file_name) or { panic(err) }
|
|
f_out.writeln('P3')
|
|
f_out.writeln('${image.width} ${image.height}')
|
|
f_out.writeln('255')
|
|
for i in 0..npixels {
|
|
c_r := to_int(image.data[i].x)
|
|
c_g := to_int(image.data[i].y)
|
|
c_b := to_int(image.data[i].z)
|
|
f_out.write('$c_r $c_g $c_b ')
|
|
}
|
|
f_out.close()
|
|
}
|
|
|
|
/*********************************** Ray *************************************/
|
|
struct Ray {
|
|
o Vec
|
|
d Vec
|
|
}
|
|
|
|
// material types, used in radiance()
|
|
enum Refl_t {
|
|
diff
|
|
spec
|
|
refr
|
|
}
|
|
|
|
/********************************* Sphere ************************************/
|
|
struct Sphere {
|
|
rad f64 = f64(0.0) // radius
|
|
p Vec // position
|
|
e Vec // emission
|
|
c Vec // color
|
|
refl Refl_t // reflection type => [diffuse, specular, refractive]
|
|
}
|
|
|
|
fn (sp Sphere) intersect (r Ray) f64 {
|
|
op := sp.p - r.o // Solve t^2*d.d + 2*t*(o-p).d + (o-p).(o-p)-R^2 = 0
|
|
b := op.dot(r.d)
|
|
mut det := b * b - op.dot(op) + sp.rad * sp.rad
|
|
|
|
if det < 0 {
|
|
return f64(0)
|
|
}
|
|
|
|
det = math.sqrt(det)
|
|
|
|
mut t := b - det
|
|
if t > eps {
|
|
return t
|
|
}
|
|
|
|
t = b + det
|
|
if t > eps {
|
|
return t
|
|
}
|
|
return f64(0)
|
|
}
|
|
|
|
/*********************************** Scenes **********************************
|
|
* 0) Cornell Box with 2 spheres
|
|
* 1) Sunset
|
|
* 2) Psychedelic
|
|
* The sphere fileds are: Sphere{radius, position, emission, color, material}
|
|
******************************************************************************/
|
|
const (
|
|
Cen = Vec{50, 40.8, -860} // used by scene 1
|
|
spheres = [
|
|
[// scene 0 cornnel box
|
|
Sphere{rad: 1e+5, p: Vec{ 1e+5 +1,40.8,81.6} , e: Vec{} , c: Vec{.75,.25,.25} , refl: .diff},//Left
|
|
Sphere{rad: 1e+5, p: Vec{-1e+5 +99,40.8,81.6}, e: Vec{} , c: Vec{.25,.25,.75} , refl: .diff},//Rght
|
|
Sphere{rad: 1e+5, p: Vec{50,40.8, 1e+5} , e: Vec{} , c: Vec{.75,.75,.75} , refl: .diff},//Back
|
|
Sphere{rad: 1e+5, p: Vec{50,40.8,-1e+5 +170} , e: Vec{} , c: Vec{} , refl: .diff},//Frnt
|
|
Sphere{rad: 1e+5, p: Vec{50, 1e+5, 81.6} , e: Vec{} , c: Vec{.75,.75,.75} , refl: .diff},//Botm
|
|
Sphere{rad: 1e+5, p: Vec{50,-1e+5 +81.6,81.6}, e: Vec{} , c: Vec{.75,.75,.75} , refl: .diff},//Top
|
|
Sphere{rad: 16.5, p: Vec{27,16.5,47} , e: Vec{} , c: Vec{1,1,1}.mult_s(.999) , refl: .spec},//Mirr
|
|
Sphere{rad: 16.5, p: Vec{73,16.5,78} , e: Vec{} , c: Vec{1,1,1}.mult_s(.999) , refl: .refr},//Glas
|
|
Sphere{rad: 600 , p: Vec{50,681.6-.27,81.6} , e: Vec{12,12,12}, c: Vec{}, refl: .diff} //Lite
|
|
],
|
|
|
|
[// scene 1 sunset
|
|
Sphere{rad: 1600, p: Vec{1.0,0.0,2.0}.mult_s(3000), e: Vec{1.0,.9,.8}.mult_s(1.2e+1*1.56*2) , c: Vec{} , refl: .diff}, // sun
|
|
Sphere{rad: 1560, p: Vec{1,0,2}.mult_s(3500) , e: Vec{1.0,.5,.05}.mult_s(4.8e+1*1.56*2) , c: Vec{} , refl: .diff}, // horizon sun2
|
|
Sphere{rad: 10000, p: Cen+Vec{0,0,-200}, e: Vec{0.00063842, 0.02001478, 0.28923243}.mult_s(6e-2*8), c: Vec{.7,.7,1}.mult_s(.25), refl: .diff}, // sky
|
|
|
|
Sphere{rad: 100000, p: Vec{50, -100000, 0} , e: Vec{} , c: Vec{.3,.3,.3} , refl: .diff}, // grnd
|
|
Sphere{rad: 110000, p: Vec{50, -110048.5, 0} , e: Vec{.9,.5,.05}.mult_s(4) , c: Vec{}, refl: .diff},// horizon brightener
|
|
Sphere{rad: 4e+4 , p: Vec{50, -4e+4-30, -3000}, e: Vec{} , c: Vec{.2,.2,.2} , refl: .diff},// mountains
|
|
|
|
Sphere{rad: 26.5, p: Vec{22,26.5,42}, e: Vec{}, c: Vec{1,1,1}.mult_s(.596) , refl: .spec}, // white Mirr
|
|
Sphere{rad: 13, p: Vec{75,13,82 }, e: Vec{}, c: Vec{.96,.96,.96}.mult_s(.96), refl: .refr},// Glas
|
|
Sphere{rad: 22, p: Vec{87,22,24 }, e: Vec{}, c: Vec{.6,.6,.6}.mult_s(.696) , refl: .refr} // Glas2
|
|
],
|
|
|
|
|
|
[// scene 3 Psychedelic
|
|
Sphere{rad: 150, p: Vec{50+75,28,62}, e: Vec{1,1,1}.mult_s(0e-3), c: Vec{1,.9,.8}.mult_s(.93), refl: .refr},
|
|
Sphere{rad: 28 , p: Vec{50+5,-28,62}, e: Vec{1,1,1}.mult_s(1e+1), c: Vec{1,1,1}.mult_s(0) , refl: .diff},
|
|
Sphere{rad: 300, p: Vec{50,28,62} , e: Vec{1,1,1}.mult_s(0e-3), c: Vec{1,1,1}.mult_s(.93) , refl: .spec}
|
|
]
|
|
|
|
] // end of scene array
|
|
|
|
)
|
|
|
|
/*********************************** Utilities *******************************/
|
|
[inline]
|
|
fn clamp(x f64) f64 {
|
|
if x < 0 { return 0 }
|
|
if x > 1 { return 1 }
|
|
return x
|
|
}
|
|
|
|
[inline]
|
|
fn to_int(x f64) int {
|
|
p := math.pow(clamp(x), f64(1.0/2.2))
|
|
return int(p*f64(255.0)+f64(0.5))
|
|
}
|
|
|
|
fn intersect(r Ray, spheres &Sphere, nspheres int) (bool, f64, int){
|
|
mut d := f64(0)
|
|
mut t := inf
|
|
mut id := 0
|
|
for i:=nspheres-1; i >= 0; i-- {
|
|
d = spheres[i].intersect(r)
|
|
if d > 0 && d < t {
|
|
t = d
|
|
id = i
|
|
}
|
|
}
|
|
return (t < inf) , t, id
|
|
}
|
|
|
|
// some casual random function, try to avoid the 0
|
|
fn rand_f64() f64 {
|
|
x := (C.rand()+1) & 0x3FFF_FFFF
|
|
return f64(x)/f64(0x3FFF_FFFF)
|
|
}
|
|
|
|
|
|
const(
|
|
cache_len = 65536 // the 2*pi angle will be splitted in 65536 part
|
|
cache_mask = cache_len - 1 // mask to speed-up the module process
|
|
)
|
|
|
|
struct Cache {
|
|
mut:
|
|
sin_tab [65536]f64
|
|
cos_tab [65536]f64
|
|
}
|
|
|
|
fn new_tabs() Cache {
|
|
mut c := Cache{}
|
|
inv_len := f64(1.0) / f64(cache_len)
|
|
for i in 0..cache_len {
|
|
x := f64(i) * math.pi * 2.0 * inv_len
|
|
c.sin_tab[i] = math.sin(x)
|
|
c.cos_tab[i] = math.cos(x)
|
|
}
|
|
return c
|
|
}
|
|
|
|
/************* Cache for sin/cos speed-up table and scene selector ***********/
|
|
const (
|
|
tabs = new_tabs()
|
|
)
|
|
|
|
/******************* main function for the radiance calculation **************/
|
|
fn radiance(r Ray, depthi int, scene_id int) Vec {
|
|
sin_tab := &f64( tabs.sin_tab )
|
|
cos_tab := &f64( tabs.cos_tab )
|
|
mut depth := depthi // actual depth in the reflection tree
|
|
mut t := f64(0) // distance to intersection
|
|
mut id := 0 // id of intersected object
|
|
mut res := false // result of intersect
|
|
|
|
v_1 := f64(1.0)
|
|
//v_2 := f64(2.0)
|
|
|
|
scene := spheres[scene_id]
|
|
//res, t, id = intersect(r, id, tb.scene)
|
|
res, t, id = intersect(r, scene.data, scene.len)
|
|
if !res { return Vec{} } //if miss, return black
|
|
|
|
obj := scene[id] // the hit object
|
|
|
|
x := r.o + r.d.mult_s(t)
|
|
n := (x - obj.p).norm()
|
|
|
|
nl := if n.dot(r.d) < 0.0 { n } else { n.mult_s(-1) }
|
|
|
|
mut f := obj.c
|
|
|
|
// max reflection
|
|
mut p := f.z
|
|
if f.x > f.y && f.x > f.z {
|
|
p = f.x
|
|
} else {
|
|
if f.y > f.z {
|
|
p = f.y
|
|
}
|
|
}
|
|
|
|
depth++
|
|
if depth > 5 {
|
|
if rand_f64() < p {
|
|
f = f.mult_s(f64(1.0)/p)
|
|
} else {
|
|
return obj.e //R.R.
|
|
}
|
|
}
|
|
|
|
if obj.refl == .diff { // Ideal DIFFUSE reflection
|
|
// **Full Precision**
|
|
//r1 := f64(2.0 * math.pi) * rand_f64()
|
|
|
|
// tabbed speed-up
|
|
r1 := C.rand() & cache_mask
|
|
|
|
r2 := rand_f64()
|
|
r2s := math.sqrt(r2)
|
|
|
|
w := nl
|
|
|
|
mut u := if math.abs(w.x) > f64(0.1) {
|
|
Vec{0, 1, 0}
|
|
} else {
|
|
Vec{1, 0, 0}
|
|
}
|
|
u = u.cross(w).norm()
|
|
|
|
v := w.cross(u)
|
|
|
|
// **Full Precision**
|
|
//d := (u.mult_s(math.cos(r1) * r2s) + v.mult_s(math.sin(r1) * r2s) + w.mult_s(1.0 - r2)).norm()
|
|
|
|
// tabbed speed-up
|
|
d := (u.mult_s(cos_tab[r1] * r2s) + v.mult_s(sin_tab[r1] * r2s) + w.mult_s(math.sqrt(f64(1.0) - r2))).norm()
|
|
|
|
return obj.e + f * radiance(Ray{x, d}, depth, scene_id)
|
|
} else {
|
|
if obj.refl == .spec { // Ideal SPECULAR reflection
|
|
return obj.e + f * radiance(Ray{x, r.d - n.mult_s(2.0 * n.dot(r.d)) }, depth, scene_id)
|
|
}
|
|
}
|
|
|
|
refl_ray := Ray{x, r.d - n.mult_s(2.0 * n.dot(r.d))} // Ideal dielectric REFRACTION
|
|
into := n.dot(nl) > 0 // Ray from outside going in?
|
|
|
|
nc := f64(1.0)
|
|
nt := f64(1.5)
|
|
|
|
nnt := if into { nc / nt } else { nt / nc }
|
|
|
|
ddn := r.d.dot(nl)
|
|
cos2t := v_1 - nnt * nnt * (v_1 - ddn * ddn)
|
|
if cos2t < 0.0 { // Total internal reflection
|
|
return obj.e + f * radiance(refl_ray, depth, scene_id)
|
|
}
|
|
|
|
dirc := if into { f64(1) } else { f64(-1) }
|
|
tdir := (r.d.mult_s(nnt) - n.mult_s(dirc * (ddn * nnt + math.sqrt(cos2t)))).norm()
|
|
|
|
a := nt - nc
|
|
b := nt + nc
|
|
r0 := a * a / (b * b)
|
|
c := if into { v_1 + ddn } else { v_1 - tdir.dot(n) }
|
|
|
|
re := r0 + (v_1 - r0) * c * c * c * c * c
|
|
tr := v_1 - re
|
|
pp := f64(.25) + f64(.5) * re
|
|
rp := re / pp
|
|
tp := tr / (v_1 - pp)
|
|
|
|
mut tmp := Vec{}
|
|
if depth > 2 {
|
|
// Russian roulette
|
|
tmp = if rand_f64() < pp {
|
|
radiance(refl_ray, depth, scene_id).mult_s(rp)
|
|
} else {
|
|
radiance(Ray{x, tdir}, depth, scene_id).mult_s(tp)
|
|
}
|
|
} else {
|
|
tmp = (radiance(refl_ray, depth, scene_id).mult_s(re)) + (radiance( Ray{x, tdir}, depth, scene_id).mult_s(tr))
|
|
}
|
|
return obj.e + (f * tmp)
|
|
}
|
|
|
|
/************************ beam scan routine **********************************/
|
|
fn ray_trace(w int, h int, samps int, file_name string, scene_id int) Image {
|
|
image := new_image(w, h)
|
|
|
|
// inverse costants
|
|
w1 := f64(1.0 / w)
|
|
h1 := f64(1.0 / h)
|
|
samps1 := f64(1.0 / samps)
|
|
|
|
cam := Ray{Vec{50, 52, 295.6}, Vec{0, -0.042612, -1}.norm()} // cam position, direction
|
|
cx := Vec{ f64(w) * 0.5135 / f64(h), 0, 0}
|
|
cy := cx.cross(cam.d).norm().mult_s(0.5135)
|
|
mut r := Vec{}
|
|
|
|
// speed-up constants
|
|
v_1 := f64(1.0)
|
|
v_2 := f64(2.0)
|
|
|
|
// OpenMP injection point! #pragma omp parallel for schedule(dynamic, 1) shared(c)
|
|
for y:=0; y < h; y++ {
|
|
eprint("\rRendering (${samps * 4} spp) ${(100.0 * f64(y)) / (f64(h) - 1.0):5.2f}%")
|
|
for x in 0..w {
|
|
|
|
i := (h - y - 1) * w + x
|
|
mut ivec := &image.data[i]
|
|
// we use sx and sy to perform a square subsampling of 4 samples
|
|
for sy := 0; sy < 2; sy ++ {
|
|
for sx := 0; sx < 2; sx ++ {
|
|
r = Vec{0,0,0}
|
|
for _ in 0..samps {
|
|
r1 := v_2 * rand_f64()
|
|
dx := if r1 < v_1 { math.sqrt(r1) - v_1 } else { v_1 - math.sqrt(v_2 - r1) }
|
|
|
|
r2 := v_2 * rand_f64()
|
|
dy := if r2 < v_1 { math.sqrt(r2) - v_1 } else { v_1 - math.sqrt(v_2 - r2) }
|
|
|
|
d := cx.mult_s( ( (f64(sx) + 0.5 + dx)*0.5 + f64(x))*w1 - .5) +
|
|
cy.mult_s( ( (f64(sy) + 0.5 + dy)*0.5 + f64(y))*h1 - .5) + cam.d
|
|
r = r + radiance(Ray{cam.o+d.mult_s(140.0), d.norm()}, 0, scene_id).mult_s(samps1)
|
|
}
|
|
tmp_vec := Vec{clamp(r.x),clamp(r.y),clamp(r.z)}.mult_s(.25)
|
|
(*ivec) = *ivec + tmp_vec
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return image
|
|
}
|
|
|
|
fn main() {
|
|
if os.args.len > 6 {
|
|
eprintln('Usage:\n path_tracing [samples] [image.ppm] [scene_n] [width] [height]')
|
|
exit(1)
|
|
}
|
|
mut width := 320 // width of the rendering in pixels
|
|
mut height := 200 // height of the rendering in pixels
|
|
mut samples := 4 // number of samples per pixel, increase for better quality
|
|
mut scene_id := 0 // scene to render [0 cornell box,1 sunset,2 psyco]
|
|
mut file_name := 'image.ppm' // name of the output file in .ppm format
|
|
|
|
if os.args.len >= 2 {
|
|
samples = os.args[1].int() / 4
|
|
}
|
|
if os.args.len >= 3 {
|
|
file_name = os.args[2]
|
|
}
|
|
if os.args.len >= 4 {
|
|
scene_id = os.args[3].int()
|
|
}
|
|
if os.args.len >= 5 {
|
|
width = os.args[4].int()
|
|
}
|
|
if os.args.len == 6 {
|
|
height = os.args[5].int()
|
|
}
|
|
|
|
// init the rand, using the same seed allows to obtain the same result in different runs
|
|
// change the seed from 2020 for different results
|
|
rand.seed(2020)
|
|
|
|
t1:=time.ticks()
|
|
|
|
image := ray_trace(width, height, samples, file_name, scene_id)
|
|
t2:=time.ticks()
|
|
|
|
|
|
eprintln('\nRendering finished. Took: ${(t2-t1):5}ms')
|
|
|
|
image.save_as_ppm( file_name )
|
|
t3:=time.ticks()
|
|
|
|
eprintln('Image saved as [${file_name}]. Took: ${(t3-t2):5}ms')
|
|
}
|