324 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			324 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			V
		
	
	
| // Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
 | |
| // Use of this source code is governed by an MIT license
 | |
| // that can be found in the LICENSE file.
 | |
| module math
 | |
| 
 | |
| #include <math.h>
 | |
| 
 | |
| fn C.acos(x f64) f64
 | |
| fn C.asin(x f64) f64
 | |
| fn C.atan(x f64) f64
 | |
| fn C.atan2(y f64, x f64) f64
 | |
| fn C.cbrt(x f64) f64
 | |
| fn C.ceil(x f64) f64
 | |
| fn C.cos(x f64) f64
 | |
| fn C.cosf(x f32) f32
 | |
| fn C.cosh(x f64) f64
 | |
| fn C.erf(x f64) f64
 | |
| fn C.erfc(x f64) f64
 | |
| fn C.exp(x f64) f64
 | |
| fn C.exp2(x f64) f64
 | |
| fn C.fabs(x f64) f64
 | |
| fn C.floor(x f64) f64
 | |
| fn C.fmod(x f64, y f64) f64
 | |
| fn C.hypot(x f64, y f64) f64
 | |
| fn C.log(x f64) f64
 | |
| fn C.log2(x f64) f64
 | |
| fn C.log10(x f64) f64
 | |
| fn C.lgamma(x f64) f64
 | |
| fn C.pow(x f64, y f64) f64
 | |
| fn C.powf(x f32, y f32) f32
 | |
| fn C.round(x f64) f64
 | |
| fn C.sin(x f64) f64
 | |
| fn C.sinf(x f32) f32
 | |
| fn C.sinh(x f64) f64
 | |
| fn C.sqrt(x f64) f64
 | |
| fn C.sqrtf(x f32) f32
 | |
| fn C.tgamma(x f64) f64
 | |
| fn C.tan(x f64) f64
 | |
| fn C.tanf(x f32) f32
 | |
| fn C.tanh(x f64) f64
 | |
| fn C.trunc(x f64) f64
 | |
| 
 | |
| // NOTE
 | |
| // When adding a new function, please make sure it's in the right place.
 | |
| // All functions are sorted alphabetically.
 | |
| 
 | |
| // Returns the absolute value.
 | |
| pub fn abs(a f64) f64 {
 | |
| 	return C.fabs(a)
 | |
| }
 | |
| 
 | |
| // acos calculates inverse cosine (arccosine).
 | |
| pub fn acos(a f64) f64 {
 | |
| 	return C.acos(a)
 | |
| }
 | |
| 
 | |
| // asin calculates inverse sine (arcsine).
 | |
| pub fn asin(a f64) f64 {
 | |
| 	return C.asin(a)
 | |
| }
 | |
| 
 | |
| // atan calculates inverse tangent (arctangent).
 | |
| pub fn atan(a f64) f64 {
 | |
| 	return C.atan(a)
 | |
| }
 | |
| 
 | |
| // atan2 calculates inverse tangent with two arguments, returns the angle between the X axis and the point.
 | |
| pub fn atan2(a, b f64) f64 {
 | |
| 	return C.atan2(a, b)
 | |
| }
 | |
| 
 | |
| // cbrt calculates cubic root.
 | |
| pub fn cbrt(a f64) f64 {
 | |
| 	return C.cbrt(a)
 | |
| }
 | |
| 
 | |
| // ceil returns the nearest f64 greater or equal to the provided value.
 | |
| pub fn ceil(a f64) f64 {
 | |
| 	return C.ceil(a)
 | |
| }
 | |
| 
 | |
| // cos calculates cosine.
 | |
| pub fn cos(a f64) f64 {
 | |
| 	return C.cos(a)
 | |
| }
 | |
| 
 | |
| // cosf calculates cosine. (float32)
 | |
| pub fn cosf(a f32) f32 {
 | |
| 	return C.cosf(a)
 | |
| }
 | |
| 
 | |
| // cosh calculates hyperbolic cosine.
 | |
| pub fn cosh(a f64) f64 {
 | |
| 	return C.cosh(a)
 | |
| }
 | |
| 
 | |
| // degrees convert from degrees to radians.
 | |
| pub fn degrees(radians f64) f64 {
 | |
| 	return radians * (180.0 / pi)
 | |
| }
 | |
| 
 | |
| // exp calculates exponent of the number (math.pow(math.E, a)).
 | |
| pub fn exp(a f64) f64 {
 | |
| 	return C.exp(a)
 | |
| }
 | |
| 
 | |
| // digits returns an array of the digits of n in the given base.
 | |
| pub fn digits(_n, base int) []int {
 | |
| 	if base < 2 {
 | |
| 		panic('digits: Cannot find digits of n with base $base')
 | |
| 	}
 | |
| 	mut n := _n
 | |
| 	mut sign := 1
 | |
| 	if n < 0 {
 | |
| 		sign = -1
 | |
| 		n = -n
 | |
| 	}
 | |
| 	mut res := []int
 | |
| 	for n != 0 {
 | |
| 		res << (n % base) * sign
 | |
| 		n /= base
 | |
| 	}
 | |
| 	return res
 | |
| }
 | |
| 
 | |
| // erf computes the error function value
 | |
| pub fn erf(a f64) f64 {
 | |
| 	return C.erf(a)
 | |
| }
 | |
| 
 | |
| // erfc computes the complementary error function value
 | |
| pub fn erfc(a f64) f64 {
 | |
| 	return C.erfc(a)
 | |
| }
 | |
| 
 | |
| // exp2 returns the base-2 exponential function of a (math.pow(2, a)).
 | |
| pub fn exp2(a f64) f64 {
 | |
| 	return C.exp2(a)
 | |
| }
 | |
| 
 | |
| // floor returns the nearest f64 lower or equal of the provided value.
 | |
| pub fn floor(a f64) f64 {
 | |
| 	return C.floor(a)
 | |
| }
 | |
| 
 | |
| // fmod returns the floating-point remainder of number / denom (rounded towards zero):
 | |
| pub fn fmod(a, b f64) f64 {
 | |
| 	return C.fmod(a, b)
 | |
| }
 | |
| 
 | |
| // gamma computes the gamma function value
 | |
| pub fn gamma(a f64) f64 {
 | |
| 	return C.tgamma(a)
 | |
| }
 | |
| 
 | |
| // gcd calculates greatest common (positive) divisor (or zero if a and b are both zero).
 | |
| pub fn gcd(a_, b_ i64) i64 {
 | |
| 	mut a := a_
 | |
| 	mut b := b_
 | |
| 	if a < 0 {
 | |
| 		a = -a
 | |
| 	}
 | |
| 	if b < 0 {
 | |
| 		b = -b
 | |
| 	}
 | |
| 	for b != 0 {
 | |
| 		a %= b
 | |
| 		if a == 0 {
 | |
| 			return b
 | |
| 		}
 | |
| 		b %= a
 | |
| 	}
 | |
| 	return a
 | |
| }
 | |
| 
 | |
| // Returns hypotenuse of a right triangle.
 | |
| pub fn hypot(a, b f64) f64 {
 | |
| 	return C.hypot(a, b)
 | |
| }
 | |
| 
 | |
| // lcm calculates least common (non-negative) multiple.
 | |
| pub fn lcm(a, b i64) i64 {
 | |
| 	if a == 0 {
 | |
| 		return a
 | |
| 	}
 | |
| 	res := a * (b / gcd(b, a))
 | |
| 	if res < 0 {
 | |
| 		return -res
 | |
| 	}
 | |
| 	return res
 | |
| }
 | |
| 
 | |
| // log calculates natural (base-e) logarithm of the provided value.
 | |
| pub fn log(a f64) f64 {
 | |
| 	return C.log(a)
 | |
| }
 | |
| 
 | |
| // log2 calculates base-2 logarithm of the provided value.
 | |
| pub fn log2(a f64) f64 {
 | |
| 	return C.log2(a)
 | |
| }
 | |
| 
 | |
| // log10 calculates the common (base-10) logarithm of the provided value.
 | |
| pub fn log10(a f64) f64 {
 | |
| 	return C.log10(a)
 | |
| }
 | |
| 
 | |
| // log_gamma computes the log-gamma function value
 | |
| pub fn log_gamma(a f64) f64 {
 | |
| 	return C.lgamma(a)
 | |
| }
 | |
| 
 | |
| // log_n calculates base-N logarithm of the provided value.
 | |
| pub fn log_n(a, b f64) f64 {
 | |
| 	return C.log(a) / C.log(b)
 | |
| }
 | |
| 
 | |
| // max returns the maximum value of the two provided.
 | |
| pub fn max(a, b f64) f64 {
 | |
| 	if a > b {
 | |
| 		return a
 | |
| 	}
 | |
| 	return b
 | |
| }
 | |
| 
 | |
| // min returns the minimum value of the two provided.
 | |
| pub fn min(a, b f64) f64 {
 | |
| 	if a < b {
 | |
| 		return a
 | |
| 	}
 | |
| 	return b
 | |
| }
 | |
| 
 | |
| // pow returns base raised to the provided power.
 | |
| pub fn pow(a, b f64) f64 {
 | |
| 	return C.pow(a, b)
 | |
| }
 | |
| 
 | |
| // powf returns base raised to the provided power. (float32)
 | |
| pub fn powf(a, b f32) f32 {
 | |
| 	return C.powf(a, b)
 | |
| }
 | |
| 
 | |
| // radians convert from radians to degrees.
 | |
| pub fn radians(degrees f64) f64 {
 | |
| 	return degrees * (pi / 180.0)
 | |
| }
 | |
| 
 | |
| // round returns the integer nearest to the provided value.
 | |
| pub fn round(f f64) f64 {
 | |
| 	return C.round(f)
 | |
| }
 | |
| 
 | |
| // sin calculates sine.
 | |
| pub fn sin(a f64) f64 {
 | |
| 	return C.sin(a)
 | |
| }
 | |
| 
 | |
| // sinf calculates sine. (float32)
 | |
| pub fn sinf(a f32) f32 {
 | |
| 	return C.sinf(a)
 | |
| }
 | |
| 
 | |
| // sinh calculates hyperbolic sine.
 | |
| pub fn sinh(a f64) f64 {
 | |
| 	return C.sinh(a)
 | |
| }
 | |
| 
 | |
| // sqrt calculates square-root of the provided value.
 | |
| pub fn sqrt(a f64) f64 {
 | |
| 	return C.sqrt(a)
 | |
| }
 | |
| 
 | |
| // sqrtf calculates square-root of the provided value. (float32)
 | |
| pub fn sqrtf(a f32) f32 {
 | |
| 	return C.sqrtf(a)
 | |
| }
 | |
| 
 | |
| // tan calculates tangent.
 | |
| pub fn tan(a f64) f64 {
 | |
| 	return C.tan(a)
 | |
| }
 | |
| 
 | |
| // tanf calculates tangent. (float32)
 | |
| pub fn tanf(a f32) f32 {
 | |
| 	return C.tanf(a)
 | |
| }
 | |
| 
 | |
| // tanh calculates hyperbolic tangent.
 | |
| pub fn tanh(a f64) f64 {
 | |
| 	return C.tanh(a)
 | |
| }
 | |
| 
 | |
| // trunc rounds a toward zero, returning the nearest integral value that is not
 | |
| // larger in magnitude than a.
 | |
| pub fn trunc(a f64) f64 {
 | |
| 	return C.trunc(a)
 | |
| }
 | |
| 
 | |
| // Faster approximate sin() and cos() implemented from lolremez
 | |
| pub fn aprox_sin(a f64) f64 {
 | |
| 	a0 := 1.91059300966915117e-31
 | |
| 	a1 := 1.00086760103908896
 | |
| 	a2 := -1.21276126894734565e-2
 | |
| 	a3 := -1.38078780785773762e-1
 | |
| 	a4 := -2.67353392911981221e-2
 | |
| 	a5 := 2.08026600266304389e-2
 | |
| 	a6 := -3.03996055049204407e-3
 | |
| 	a7 := 1.38235642404333740e-4
 | |
| 	return a0 + a * (a1 + a * (a2 + a * (a3 + a * (a4 + a * (a5 + a * (a6 + a * a7))))))
 | |
| }
 | |
| 
 | |
| pub fn aprox_cos(a f64) f64 {
 | |
| 	a0 := 9.9995999154986614e-1
 | |
| 	a1 := 1.2548995793001028e-3
 | |
| 	a2 := -5.0648546280678015e-1
 | |
| 	a3 := 1.2942246466519995e-2
 | |
| 	a4 := 2.8668384702547972e-2
 | |
| 	a5 := 7.3726485210586547e-3
 | |
| 	a6 := -3.8510875386947414e-3
 | |
| 	a7 := 4.7196604604366623e-4
 | |
| 	a8 := -1.8776444013090451e-5
 | |
| 	return a0 + a * (a1 + a * (a2 + a * (a3 + a * (a4 + a * (a5 + a * (a6 + a * (a7 + a * a8)))))))
 | |
| } |