v/vlib/crypto
688862 83e9585d06
crypto: crypto.aes CBC mode moves to crypto.cipher (#13084)
2022-01-08 17:08:46 +02:00
..
aes crypto: crypto.aes CBC mode moves to crypto.cipher (#13084) 2022-01-08 17:08:46 +02:00
bcrypt
blowfish crypto.blowfish: add doc comments for the public API (#12609) 2021-11-29 22:19:52 +02:00
cipher crypto: crypto.aes CBC mode moves to crypto.cipher (#13084) 2022-01-08 17:08:46 +02:00
des crypto: add a crypto.des module (#13065) 2022-01-07 13:51:37 +02:00
hmac
internal/subtle
md5
rand
rc4
sha1
sha256
sha512
README.md crypto: crypto.aes CBC mode moves to crypto.cipher (#13084) 2022-01-08 17:08:46 +02:00
crypto.v

README.md

Description:

crypto is a module that exposes cryptographic algorithms to V programs.

Each submodule implements things differently, so be sure to consider the documentation of the specific algorithm you need, but in general, the method is to create a cipher struct using one of the module functions, and then to call the encrypt or decrypt method on that struct to actually encrypt or decrypt your data.

This module is a work-in-progress. For example, the AES implementation currently requires you to create a destination buffer of the correct size to receive the decrypted data, and the AesCipher encrypt and decrypt functions only operate on the first block of the src.

The implementations here are loosely based on Go's crypto package.

Examples:

import crypto.aes
import crypto.rand

fn main() {
	// remember to save this key somewhere if you ever want to decrypt your data
	key := rand.read(32) ?
	println('KEY: $key')

	// this data is one block (16 bytes) big
	mut data := 'THIS IS THE DATA'.bytes()

	println('generating cipher')
	cipher := aes.new_cipher(key)

	println('performing encryption')
	mut encrypted := []byte{len: aes.block_size}
	cipher.encrypt(mut encrypted, data)
	println(encrypted)

	println('performing decryption')
	mut decrypted := []byte{len: aes.block_size}
	cipher.decrypt(mut decrypted, encrypted)
	println(decrypted)

	assert decrypted == data
}