313 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			313 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			V
		
	
	
| // Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
 | |
| // Use of this source code is governed by an MIT license
 | |
| // that can be found in the LICENSE file.
 | |
| module rand
 | |
| 
 | |
| import rand.seed
 | |
| import rand.wyrand
 | |
| import time
 | |
| 
 | |
| // PRNGConfigStruct is a configuration struct for creating a new instance of the default RNG.
 | |
| // Note that the RNGs may have a different number of u32s required for seeding. The default
 | |
| // generator WyRand used 64 bits, ie. 2 u32s so that is the default. In case your desired generator
 | |
| // uses a different number of u32s, use the `seed.time_seed_array()` method with the correct
 | |
| // number of u32s.
 | |
| pub struct PRNGConfigStruct {
 | |
| 	seed []u32 = seed.time_seed_array(2)
 | |
| }
 | |
| 
 | |
| // PRNG is a common interface for all PRNGs that can be used seamlessly with the rand
 | |
| // modules's API. It defines all the methods that a PRNG (in the vlib or custom made) must
 | |
| // implement in order to ensure that _all_ functions can be used with the generator.
 | |
| pub interface PRNG {
 | |
| 	seed(seed_data []u32)
 | |
| 	u32() u32
 | |
| 	u64() u64
 | |
| 	u32n(max u32) u32
 | |
| 	u64n(max u64) u64
 | |
| 	u32_in_range(min u32, max u32) u32
 | |
| 	u64_in_range(min u64, max u64) u64
 | |
| 	int() int
 | |
| 	i64() i64
 | |
| 	int31() int
 | |
| 	int63() i64
 | |
| 	intn(max int) int
 | |
| 	i64n(max i64) i64
 | |
| 	int_in_range(min int, max int) int
 | |
| 	i64_in_range(min i64, max i64) i64
 | |
| 	f32() f32
 | |
| 	f64() f64
 | |
| 	f32n(max f32) f32
 | |
| 	f64n(max f64) f64
 | |
| 	f32_in_range(min f32, max f32) f32
 | |
| 	f64_in_range(min f64, max f64) f64
 | |
| }
 | |
| 
 | |
| __global ( default_rng &PRNG )
 | |
| 
 | |
| // init initializes the default RNG.
 | |
| fn init() {
 | |
| 	default_rng = new_default({})
 | |
| }
 | |
| 
 | |
| // new_default returns a new instance of the default RNG. If the seed is not provided, the current time will be used to seed the instance.
 | |
| pub fn new_default(config PRNGConfigStruct) &PRNG {
 | |
| 	mut rng := &wyrand.WyRandRNG{}
 | |
| 	rng.seed(config.seed)
 | |
| 	return rng
 | |
| }
 | |
| 
 | |
| // get_current_rng returns the PRNG instance currently in use. If it is not changed, it will be an instance of wyrand.WyRandRNG.
 | |
| pub fn get_current_rng() &PRNG {
 | |
| 	return default_rng
 | |
| }
 | |
| 
 | |
| // set_rng changes the default RNG from wyrand.WyRandRNG (or whatever the last RNG was) to the one
 | |
| // provided by the user. Note that this new RNG must be seeded manually with a constant seed or the 
 | |
| // `seed.time_seed_array()` method. Also, it is recommended to store the old RNG in a variable and
 | |
| // should be restored if work with the custom RNG is complete. It is not necessary to restore if the
 | |
| // program terminates soon afterwards.
 | |
| pub fn set_rng(rng &PRNG) {
 | |
| 	default_rng = rng
 | |
| }
 | |
| 
 | |
| // seed sets the given array of `u32` values as the seed for the `default_rng`. The default_rng is
 | |
| // an instance of WyRandRNG which takes 2 u32 values. When using a custom RNG, make sure to use
 | |
| // the correct number of u32s.
 | |
| pub fn seed(seed []u32) {
 | |
| 	default_rng.seed(seed)
 | |
| }
 | |
| 
 | |
| // u32 returns a uniformly distributed `u32` in range `[0, 2³²)`.
 | |
| pub fn u32() u32 {
 | |
| 	return default_rng.u32()
 | |
| }
 | |
| 
 | |
| // u64 returns a uniformly distributed `u64` in range `[0, 2⁶⁴)`.
 | |
| pub fn u64() u64 {
 | |
| 	return default_rng.u64()
 | |
| }
 | |
| 
 | |
| // u32n returns a uniformly distributed pseudorandom 32-bit signed positive `u32` in range `[0, max)`.
 | |
| pub fn u32n(max u32) u32 {
 | |
| 	return default_rng.u32n(max)
 | |
| }
 | |
| 
 | |
| // u64n returns a uniformly distributed pseudorandom 64-bit signed positive `u64` in range `[0, max)`.
 | |
| pub fn u64n(max u64) u64 {
 | |
| 	return default_rng.u64n(max)
 | |
| }
 | |
| 
 | |
| // u32_in_range returns a uniformly distributed pseudorandom 32-bit unsigned `u32` in range `[min, max)`.
 | |
| pub fn u32_in_range(min u32, max u32) u32 {
 | |
| 	return default_rng.u32_in_range(min, max)
 | |
| }
 | |
| 
 | |
| // u64_in_range returns a uniformly distributed pseudorandom 64-bit unsigned `u64` in range `[min, max)`.
 | |
| pub fn u64_in_range(min u64, max u64) u64 {
 | |
| 	return default_rng.u64_in_range(min, max)
 | |
| }
 | |
| 
 | |
| // int returns a uniformly distributed pseudorandom 32-bit signed (possibly negative) `int`.
 | |
| pub fn int() int {
 | |
| 	return default_rng.int()
 | |
| }
 | |
| 
 | |
| // intn returns a uniformly distributed pseudorandom 32-bit signed positive `int` in range `[0, max)`.
 | |
| pub fn intn(max int) int {
 | |
| 	return default_rng.intn(max)
 | |
| }
 | |
| 
 | |
| // byte returns a uniformly distributed pseudorandom 8-bit unsigned positive `byte`.
 | |
| pub fn byte() byte {
 | |
| 	return byte(default_rng.u32() & 0xff)
 | |
| }
 | |
| 
 | |
| // int_in_range returns a uniformly distributed pseudorandom  32-bit signed int in range `[min, max)`.
 | |
| // Both `min` and `max` can be negative, but we must have `min < max`.
 | |
| pub fn int_in_range(min int, max int) int {
 | |
| 	return default_rng.int_in_range(min, max)
 | |
| }
 | |
| 
 | |
| // int31 returns a uniformly distributed pseudorandom 31-bit signed positive `int`.
 | |
| pub fn int31() int {
 | |
| 	return default_rng.int31()
 | |
| }
 | |
| 
 | |
| // i64 returns a uniformly distributed pseudorandom 64-bit signed (possibly negative) `i64`.
 | |
| pub fn i64() i64 {
 | |
| 	return default_rng.i64()
 | |
| }
 | |
| 
 | |
| // i64n returns a uniformly distributed pseudorandom 64-bit signed positive `i64` in range `[0, max)`.
 | |
| pub fn i64n(max i64) i64 {
 | |
| 	return default_rng.i64n(max)
 | |
| }
 | |
| 
 | |
| // i64_in_range returns a uniformly distributed pseudorandom 64-bit signed `i64` in range `[min, max)`.
 | |
| pub fn i64_in_range(min i64, max i64) i64 {
 | |
| 	return default_rng.i64_in_range(min, max)
 | |
| }
 | |
| 
 | |
| // int63 returns a uniformly distributed pseudorandom 63-bit signed positive `i64`.
 | |
| pub fn int63() i64 {
 | |
| 	return default_rng.int63()
 | |
| }
 | |
| 
 | |
| // f32 returns a uniformly distributed 32-bit floating point in range `[0, 1)`.
 | |
| pub fn f32() f32 {
 | |
| 	return default_rng.f32()
 | |
| }
 | |
| 
 | |
| // f64 returns a uniformly distributed 64-bit floating point in range `[0, 1)`.
 | |
| pub fn f64() f64 {
 | |
| 	return default_rng.f64()
 | |
| }
 | |
| 
 | |
| // f32n returns a uniformly distributed 32-bit floating point in range `[0, max)`.
 | |
| pub fn f32n(max f32) f32 {
 | |
| 	return default_rng.f32n(max)
 | |
| }
 | |
| 
 | |
| // f64n returns a uniformly distributed 64-bit floating point in range `[0, max)`.
 | |
| pub fn f64n(max f64) f64 {
 | |
| 	return default_rng.f64n(max)
 | |
| }
 | |
| 
 | |
| // f32_in_range returns a uniformly distributed 32-bit floating point in range `[min, max)`.
 | |
| pub fn f32_in_range(min f32, max f32) f32 {
 | |
| 	return default_rng.f32_in_range(min, max)
 | |
| }
 | |
| 
 | |
| // f64_in_range returns a uniformly distributed 64-bit floating point in range `[min, max)`.
 | |
| pub fn f64_in_range(min f64, max f64) f64 {
 | |
| 	return default_rng.f64_in_range(min, max)
 | |
| }
 | |
| 
 | |
| const (
 | |
| 	english_letters = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
 | |
| 	hex_chars       = 'abcdef0123456789'
 | |
| 	ascii_chars     = '!"#$%&\'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ\\^_`abcdefghijklmnopqrstuvwxyz{|}~'
 | |
| )
 | |
| 
 | |
| // string_from_set returns a string of length `len` containing random characters sampled from the given `charset`
 | |
| pub fn string_from_set(charset string, len int) string {
 | |
| 	if len == 0 {
 | |
| 		return ''
 | |
| 	}
 | |
| 	mut buf := unsafe { malloc(len) }
 | |
| 	for i in 0 .. len {
 | |
| 		unsafe {
 | |
| 			buf[i] = charset[intn(charset.len)]
 | |
| 		}
 | |
| 	}
 | |
| 	return unsafe { buf.vstring_with_len(len) }
 | |
| }
 | |
| 
 | |
| // string returns a string of length `len` containing random characters in range `[a-zA-Z]`.
 | |
| pub fn string(len int) string {
 | |
| 	return string_from_set(rand.english_letters, len)
 | |
| }
 | |
| 
 | |
| // hex returns a hexadecimal number of length `len` containing random characters in range `[a-f0-9]`.
 | |
| pub fn hex(len int) string {
 | |
| 	return string_from_set(rand.hex_chars, len)
 | |
| }
 | |
| 
 | |
| // ascii returns a random string of the printable ASCII characters with length `len`.
 | |
| pub fn ascii(len int) string {
 | |
| 	return string_from_set(rand.ascii_chars, len)
 | |
| }
 | |
| 
 | |
| // uuid_v4 generates a random (v4) UUID
 | |
| // See https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_(random)
 | |
| pub fn uuid_v4() string {
 | |
| 	buflen := 36
 | |
| 	mut buf := unsafe { malloc(37) }
 | |
| 	mut i_buf := 0
 | |
| 	mut x := u64(0)
 | |
| 	mut d := byte(0)
 | |
| 	for i_buf < buflen {
 | |
| 		mut c := 0
 | |
| 		x = default_rng.u64()
 | |
| 		// do most of the bit manipulation at once:
 | |
| 		x &= 0x0F0F0F0F0F0F0F0F
 | |
| 		x += 0x3030303030303030
 | |
| 		// write the ASCII codes to the buffer:
 | |
| 		for c < 8 && i_buf < buflen {
 | |
| 			d = byte(x)
 | |
| 			unsafe {
 | |
| 				buf[i_buf] = if d > 0x39 { d + 0x27 } else { d }
 | |
| 			}
 | |
| 			i_buf++
 | |
| 			c++
 | |
| 			x = x >> 8
 | |
| 		}
 | |
| 	}
 | |
| 	// there are still some random bits in x:
 | |
| 	x = x >> 8
 | |
| 	d = byte(x)
 | |
| 	unsafe {
 | |
| 		buf[19] = if d > 0x39 { d + 0x27 } else { d }
 | |
| 		buf[8] = `-`
 | |
| 		buf[13] = `-`
 | |
| 		buf[18] = `-`
 | |
| 		buf[23] = `-`
 | |
| 		buf[14] = `4`
 | |
| 		buf[buflen] = 0
 | |
| 		return buf.vstring_with_len(buflen)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| const (
 | |
| 	ulid_encoding = '0123456789ABCDEFGHJKMNPQRSTVWXYZ'
 | |
| )
 | |
| 
 | |
| // ulid generates an Unique Lexicographically sortable IDentifier.
 | |
| // See https://github.com/ulid/spec .
 | |
| // NB: ULIDs can leak timing information, if you make them public, because
 | |
| // you can infer the rate at which some resource is being created, like
 | |
| // users or business transactions.
 | |
| // (https://news.ycombinator.com/item?id=14526173)
 | |
| pub fn ulid() string {
 | |
| 	return ulid_at_millisecond(time.utc().unix_time_milli())
 | |
| }
 | |
| 
 | |
| // ulid_at_millisecond does the same as `ulid` but takes a custom Unix millisecond timestamp via `unix_time_milli`.
 | |
| pub fn ulid_at_millisecond(unix_time_milli u64) string {
 | |
| 	buflen := 26
 | |
| 	mut buf := unsafe { malloc(27) }
 | |
| 	mut t := unix_time_milli
 | |
| 	mut i := 9
 | |
| 	for i >= 0 {
 | |
| 		unsafe {
 | |
| 			buf[i] = rand.ulid_encoding[t & 0x1F]
 | |
| 		}
 | |
| 		t = t >> 5
 | |
| 		i--
 | |
| 	}
 | |
| 	// first rand set
 | |
| 	mut x := default_rng.u64()
 | |
| 	i = 10
 | |
| 	for i < 19 {
 | |
| 		unsafe {
 | |
| 			buf[i] = rand.ulid_encoding[x & 0x1F]
 | |
| 		}
 | |
| 		x = x >> 5
 | |
| 		i++
 | |
| 	}
 | |
| 	// second rand set
 | |
| 	x = default_rng.u64()
 | |
| 	for i < 26 {
 | |
| 		unsafe {
 | |
| 			buf[i] = rand.ulid_encoding[x & 0x1F]
 | |
| 		}
 | |
| 		x = x >> 5
 | |
| 		i++
 | |
| 	}
 | |
| 	unsafe {
 | |
| 		buf[26] = 0
 | |
| 		return buf.vstring_with_len(buflen)
 | |
| 	}
 | |
| }
 |