226 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			226 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			V
		
	
	
| // Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
 | |
| // Use of this source code is governed by an MIT license
 | |
| // that can be found in the LICENSE file.
 | |
| module splitmix64
 | |
| 
 | |
| import rand.seed
 | |
| import rand.constants
 | |
| 
 | |
| // SplitMix64RNG ported from http://xoshiro.di.unimi.it/splitmix64.c
 | |
| pub struct SplitMix64RNG {
 | |
| mut:
 | |
| 	state     u64 = seed.time_seed_64()
 | |
| 	has_extra bool
 | |
| 	extra     u32
 | |
| }
 | |
| 
 | |
| // seed sets the seed of the accepting SplitMix64RNG to the given data
 | |
| // in little-endian format (i.e. lower 32 bits are in [0] and higher 32 bits in [1]).
 | |
| pub fn (mut rng SplitMix64RNG) seed(seed_data []u32) {
 | |
| 	if seed_data.len != 2 {
 | |
| 		eprintln('SplitMix64RNG needs 2 32-bit unsigned integers as the seed.')
 | |
| 		exit(1)
 | |
| 	}
 | |
| 	rng.state = seed_data[0] | (u64(seed_data[1]) << 32)
 | |
| 	rng.has_extra = false
 | |
| }
 | |
| 
 | |
| // u32 updates the PRNG state and returns the next pseudorandom `u32`.
 | |
| [inline]
 | |
| pub fn (mut rng SplitMix64RNG) u32() u32 {
 | |
| 	if rng.has_extra {
 | |
| 		rng.has_extra = false
 | |
| 		return rng.extra
 | |
| 	}
 | |
| 	full_value := rng.u64()
 | |
| 	lower := u32(full_value & constants.lower_mask)
 | |
| 	upper := u32(full_value >> 32)
 | |
| 	rng.extra = upper
 | |
| 	rng.has_extra = true
 | |
| 	return lower
 | |
| }
 | |
| 
 | |
| // u64 updates the PRNG state and returns the next pseudorandom `u64`.
 | |
| [inline]
 | |
| pub fn (mut rng SplitMix64RNG) u64() u64 {
 | |
| 	rng.state += (0x9e3779b97f4a7c15)
 | |
| 	mut z := rng.state
 | |
| 	z = (z ^ ((z >> u64(30)))) * (0xbf58476d1ce4e5b9)
 | |
| 	z = (z ^ ((z >> u64(27)))) * (0x94d049bb133111eb)
 | |
| 	return z ^ (z >> (31))
 | |
| }
 | |
| 
 | |
| // u32n returns a pseudorandom `u32` less than `bound`.
 | |
| [inline]
 | |
| pub fn (mut rng SplitMix64RNG) u32n(bound u32) u32 {
 | |
| 	// This function is kept similar to the u64 version
 | |
| 	if bound == 0 {
 | |
| 		eprintln('max must be non-zero')
 | |
| 		exit(1)
 | |
| 	}
 | |
| 	threshold := -bound % bound
 | |
| 	for {
 | |
| 		r := rng.u32()
 | |
| 		if r >= threshold {
 | |
| 			return r % bound
 | |
| 		}
 | |
| 	}
 | |
| 	return u32(0)
 | |
| }
 | |
| 
 | |
| // u64n returns a pseudorandom `u64` less than `bound`.
 | |
| [inline]
 | |
| pub fn (mut rng SplitMix64RNG) u64n(bound u64) u64 {
 | |
| 	// See pcg32.v for explanation of comment. This algorithm
 | |
| 	// existed before the refactoring.
 | |
| 	if bound == 0 {
 | |
| 		eprintln('max must be non-zero')
 | |
| 		exit(1)
 | |
| 	}
 | |
| 	threshold := -bound % bound
 | |
| 	for {
 | |
| 		r := rng.u64()
 | |
| 		if r >= threshold {
 | |
| 			return r % bound
 | |
| 		}
 | |
| 	}
 | |
| 	return u64(0)
 | |
| }
 | |
| 
 | |
| // u32n returns a pseudorandom `u32` value that is guaranteed to be in range `[min, max)`.
 | |
| [inline]
 | |
| pub fn (mut rng SplitMix64RNG) u32_in_range(min u32, max u32) u32 {
 | |
| 	if max <= min {
 | |
| 		eprintln('max must be greater than min')
 | |
| 		exit(1)
 | |
| 	}
 | |
| 	return min + rng.u32n(max - min)
 | |
| }
 | |
| 
 | |
| // u64n returns a pseudorandom `u64` value that is guaranteed to be in range `[min, max)`.
 | |
| [inline]
 | |
| pub fn (mut rng SplitMix64RNG) u64_in_range(min u64, max u64) u64 {
 | |
| 	if max <= min {
 | |
| 		eprintln('max must be greater than min')
 | |
| 		exit(1)
 | |
| 	}
 | |
| 	return min + rng.u64n(max - min)
 | |
| }
 | |
| 
 | |
| // int returns a pseudorandom 32-bit (possibly negative) `int`.
 | |
| [inline]
 | |
| pub fn (mut rng SplitMix64RNG) int() int {
 | |
| 	return int(rng.u32())
 | |
| }
 | |
| 
 | |
| // i64 returns a pseudorandom 64-bit (possibly negative) `i64`.
 | |
| [inline]
 | |
| pub fn (mut rng SplitMix64RNG) i64() i64 {
 | |
| 	return i64(rng.u64())
 | |
| }
 | |
| 
 | |
| // int31 returns a positive pseudorandom 31-bit `int`.
 | |
| [inline]
 | |
| pub fn (mut rng SplitMix64RNG) int31() int {
 | |
| 	return int(rng.u32() & constants.u31_mask) // Set the 32nd bit to 0.
 | |
| }
 | |
| 
 | |
| // int63 returns a positive pseudorandom 63-bit `i64`.
 | |
| [inline]
 | |
| pub fn (mut rng SplitMix64RNG) int63() i64 {
 | |
| 	return i64(rng.u64() & constants.u63_mask) // Set the 64th bit to 0.
 | |
| }
 | |
| 
 | |
| // intn returns a pseudorandom `int` in range `[0, max)`.
 | |
| [inline]
 | |
| pub fn (mut rng SplitMix64RNG) intn(max int) int {
 | |
| 	if max <= 0 {
 | |
| 		eprintln('max has to be positive.')
 | |
| 		exit(1)
 | |
| 	}
 | |
| 	return int(rng.u32n(u32(max)))
 | |
| }
 | |
| 
 | |
| // i64n returns a pseudorandom `i64` in range `[0, max)`.
 | |
| [inline]
 | |
| pub fn (mut rng SplitMix64RNG) i64n(max i64) i64 {
 | |
| 	if max <= 0 {
 | |
| 		eprintln('max has to be positive.')
 | |
| 		exit(1)
 | |
| 	}
 | |
| 	return i64(rng.u64n(u64(max)))
 | |
| }
 | |
| 
 | |
| // int_in_range returns a pseudorandom `int` in range `[min, max)`.
 | |
| [inline]
 | |
| pub fn (mut rng SplitMix64RNG) int_in_range(min int, max int) int {
 | |
| 	if max <= min {
 | |
| 		eprintln('max must be greater than min')
 | |
| 		exit(1)
 | |
| 	}
 | |
| 	// This supports negative ranges like [-10, -5) because the difference is positive
 | |
| 	return min + rng.intn(max - min)
 | |
| }
 | |
| 
 | |
| // i64_in_range returns a pseudorandom `i64` in range `[min, max)`.
 | |
| [inline]
 | |
| pub fn (mut rng SplitMix64RNG) i64_in_range(min i64, max i64) i64 {
 | |
| 	if max <= min {
 | |
| 		eprintln('max must be greater than min')
 | |
| 		exit(1)
 | |
| 	}
 | |
| 	return min + rng.i64n(max - min)
 | |
| }
 | |
| 
 | |
| // f32 returns a pseudorandom `f32` value in range `[0, 1)`.
 | |
| [inline]
 | |
| pub fn (mut rng SplitMix64RNG) f32() f32 {
 | |
| 	return f32(rng.u32()) / constants.max_u32_as_f32
 | |
| }
 | |
| 
 | |
| // f64 returns a pseudorandom `f64` value in range `[0, 1)`.
 | |
| [inline]
 | |
| pub fn (mut rng SplitMix64RNG) f64() f64 {
 | |
| 	return f64(rng.u64()) / constants.max_u64_as_f64
 | |
| }
 | |
| 
 | |
| // f32n returns a pseudorandom `f32` value in range `[0, max)`.
 | |
| [inline]
 | |
| pub fn (mut rng SplitMix64RNG) f32n(max f32) f32 {
 | |
| 	if max <= 0 {
 | |
| 		eprintln('max has to be positive.')
 | |
| 		exit(1)
 | |
| 	}
 | |
| 	return rng.f32() * max
 | |
| }
 | |
| 
 | |
| // f64n returns a pseudorandom `f64` value in range `[0, max)`.
 | |
| [inline]
 | |
| pub fn (mut rng SplitMix64RNG) f64n(max f64) f64 {
 | |
| 	if max <= 0 {
 | |
| 		eprintln('max has to be positive.')
 | |
| 		exit(1)
 | |
| 	}
 | |
| 	return rng.f64() * max
 | |
| }
 | |
| 
 | |
| // f32_in_range returns a pseudorandom `f32` in range `[min, max)`.
 | |
| [inline]
 | |
| pub fn (mut rng SplitMix64RNG) f32_in_range(min f32, max f32) f32 {
 | |
| 	if max <= min {
 | |
| 		eprintln('max must be greater than min')
 | |
| 		exit(1)
 | |
| 	}
 | |
| 	return min + rng.f32n(max - min)
 | |
| }
 | |
| 
 | |
| // i64_in_range returns a pseudorandom `i64` in range `[min, max)`.
 | |
| [inline]
 | |
| pub fn (mut rng SplitMix64RNG) f64_in_range(min f64, max f64) f64 {
 | |
| 	if max <= min {
 | |
| 		eprintln('max must be greater than min')
 | |
| 		exit(1)
 | |
| 	}
 | |
| 	return min + rng.f64n(max - min)
 | |
| }
 |