v/vlib/v/gen/native/gen.v

797 lines
17 KiB
V

// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module native
import os
import strings
import v.ast
import v.util
import v.token
import v.errors
import v.pref
import term
pub const builtins = ['assert', 'print', 'eprint', 'println', 'eprintln', 'exit', 'C.syscall']
interface CodeGen {
mut:
g &Gen
gen_exit(mut g Gen, expr ast.Expr)
// XXX WHY gen_exit fn (expr ast.Expr)
}
[heap]
pub struct Gen {
out_name string
pref &pref.Preferences // Preferences shared from V struct
mut:
code_gen CodeGen
table &ast.Table
buf []byte
sect_header_name_pos int
offset i64
str_pos []i64
stackframe_size int
strings []string // TODO use a map and don't duplicate strings
file_size_pos i64
main_fn_addr i64
code_start_pos i64 // location of the start of the assembly instructions
fn_addr map[string]i64
var_offset map[string]int // local var stack offset
stack_var_pos int
debug_pos int
errors []errors.Error
warnings []errors.Warning
syms []Symbol
size_pos []int
nlines int
callpatches []CallPatch
strs []String
}
struct String {
str string
pos int
}
struct CallPatch {
name string
pos int
}
enum Size {
_8
_16
_32
_64
}
fn get_backend(arch pref.Arch) ?CodeGen {
match arch {
.arm64 {
return Arm64{
g: 0
}
}
.amd64 {
return Amd64{
g: 0
}
}
else {}
}
return error('unsupported architecture')
}
pub fn gen(files []&ast.File, table &ast.Table, out_name string, pref &pref.Preferences) (int, int) {
exe_name := if pref.os == .windows && !out_name.ends_with('.exe') {
out_name + '.exe'
} else {
out_name
}
mut g := &Gen{
table: table
sect_header_name_pos: 0
out_name: exe_name
pref: pref
// TODO: workaround, needs to support recursive init
code_gen: get_backend(pref.arch) or {
eprintln('No available backend for this configuration. Use `-a arm64` or `-a amd64`.')
exit(1)
}
}
g.code_gen.g = g
g.generate_header()
for file in files {
/*
if file.warnings.len > 0 {
eprintln('warning: ${file.warnings[0]}')
}
*/
if file.errors.len > 0 {
g.n_error(file.errors[0].str())
}
g.stmts(file.stmts)
}
g.generate_footer()
return g.nlines, g.buf.len
}
pub fn (mut g Gen) typ(a int) &ast.TypeSymbol {
return &g.table.type_symbols[a]
}
pub fn (mut g Gen) generate_header() {
match g.pref.os {
.macos {
g.generate_macho_header()
}
.windows {
g.generate_pe_header()
}
.linux {
g.generate_elf_header()
}
.raw {
if g.pref.arch == .arm64 {
g.gen_arm64_helloworld()
}
}
else {
g.n_error('only `raw`, `linux` and `macos` are supported for -os in -native')
}
}
}
pub fn (mut g Gen) create_executable() {
// Create the binary // should be .o ?
os.write_file_array(g.out_name, g.buf) or { panic(err) }
os.chmod(g.out_name, 0o775) or { panic(err) } // make it executable
if g.pref.is_verbose {
println('\n$g.out_name: native binary has been successfully generated')
}
}
pub fn (mut g Gen) generate_footer() {
g.patch_calls()
match g.pref.os {
.macos {
g.generate_macho_footer()
}
.windows {
g.generate_pe_footer()
}
.linux {
g.generate_elf_footer()
}
.raw {
g.create_executable()
}
else {}
}
}
pub fn (mut g Gen) stmts(stmts []ast.Stmt) {
for stmt in stmts {
g.stmt(stmt)
}
}
pub fn (g &Gen) pos() i64 {
return g.buf.len
}
fn (mut g Gen) write(bytes []byte) {
for _, b in bytes {
g.buf << b
}
}
fn (mut g Gen) write8(n int) {
// write 1 byte
g.buf << byte(n)
}
fn (mut g Gen) write16(n int) {
// write 2 bytes
g.buf << byte(n)
g.buf << byte(n >> 8)
}
fn (mut g Gen) read32_at(at int) int {
return int(u32(g.buf[at]) | (u32(g.buf[at + 1]) << 8) | (u32(g.buf[at + 2]) << 16) | (u32(g.buf[
at + 3]) << 24))
}
fn (mut g Gen) write32(n int) {
// write 4 bytes
g.buf << byte(n)
g.buf << byte(n >> 8)
g.buf << byte(n >> 16)
g.buf << byte(n >> 24)
}
fn (mut g Gen) write64(n i64) {
// write 8 bytes
g.buf << byte(n)
g.buf << byte(n >> 8)
g.buf << byte(n >> 16)
g.buf << byte(n >> 24)
g.buf << byte(n >> 32)
g.buf << byte(n >> 40)
g.buf << byte(n >> 48)
g.buf << byte(n >> 56)
}
fn (mut g Gen) write64_at(n i64, at i64) {
// write 8 bytes
g.buf[at] = byte(n)
g.buf[at + 1] = byte(n >> 8)
g.buf[at + 2] = byte(n >> 16)
g.buf[at + 3] = byte(n >> 24)
g.buf[at + 4] = byte(n >> 32)
g.buf[at + 5] = byte(n >> 40)
g.buf[at + 6] = byte(n >> 48)
g.buf[at + 7] = byte(n >> 56)
}
fn (mut g Gen) write32_at(at i64, n int) {
// write 4 bytes
g.buf[at] = byte(n)
g.buf[at + 1] = byte(n >> 8)
g.buf[at + 2] = byte(n >> 16)
g.buf[at + 3] = byte(n >> 24)
}
fn (mut g Gen) write_string(s string) {
for c in s {
g.write8(int(c))
}
// g.write8(0) // null terminated strings
}
fn (mut g Gen) write_string_with_padding(s string, max int) {
for c in s {
g.write8(int(c))
}
for _ in 0 .. max - s.len {
g.write8(0)
}
}
fn (mut g Gen) get_var_offset(var_name string) int {
offset := g.var_offset[var_name]
if offset == 0 {
g.n_error('unknown variable `$var_name`')
}
return offset
}
pub fn (mut g Gen) gen_print_from_expr(expr ast.Expr, name string) {
newline := name in ['println', 'eprintln']
fd := if name in ['eprint', 'eprintln'] { 2 } else { 1 }
match expr {
ast.StringLiteral {
if newline {
g.gen_print(expr.val + '\n', fd)
} else {
g.gen_print(expr.val, fd)
}
}
ast.CallExpr {
g.call_fn(expr)
g.gen_print_reg(.rax, 3, fd)
}
ast.Ident {
g.expr(expr)
g.gen_print_reg(.rax, 3, fd)
}
ast.IntegerLiteral {
g.mov64(.rax, g.allocate_string('$expr.val\n', 2))
g.gen_print_reg(.rax, 3, fd)
}
ast.BoolLiteral {
// register 'true' and 'false' strings // g.expr(expr)
if expr.val {
g.mov64(.rax, g.allocate_string('true', 2))
} else {
g.mov64(.rax, g.allocate_string('false', 2))
}
g.gen_print_reg(.rax, 3, fd)
}
ast.SizeOf {}
ast.OffsetOf {
styp := g.typ(expr.struct_type)
field_name := expr.field
if styp.kind == .struct_ {
s := styp.info as ast.Struct
ptrsz := 4 // should be 8, but for locals is used 8 and C backend shows that too
mut off := 0
for f in s.fields {
if f.name == field_name {
g.mov64(.rax, g.allocate_string('$off\n', 2))
g.gen_print_reg(.rax, 3, fd)
break
}
off += ptrsz
}
} else {
g.v_error('_offsetof expects a struct Type as first argument', expr.pos)
}
}
ast.None {}
ast.EmptyExpr {
g.n_error('unhandled EmptyExpr')
}
ast.PostfixExpr {}
ast.PrefixExpr {}
ast.SelectorExpr {
// struct.field
g.expr(expr)
g.gen_print_reg(.rax, 3, fd)
/*
field_name := expr.field_name
g.expr
if expr.is_mut {
// mutable field access (rw)
}
*/
dump(expr)
g.v_error('struct.field selector not yet implemented for this backend', expr.pos)
}
ast.NodeError {}
/*
ast.AnonFn {}
ast.ArrayDecompose {}
ast.ArrayInit {}
ast.AsCast {}
ast.Assoc {}
ast.AtExpr {}
ast.CTempVar {}
ast.CastExpr {}
ast.ChanInit {}
ast.CharLiteral {}
ast.Comment {}
ast.ComptimeCall {}
ast.ComptimeSelector {}
ast.ConcatExpr {}
ast.DumpExpr {}
ast.EnumVal {}
ast.GoExpr {}
ast.IfGuardExpr {}
ast.IndexExpr {}
ast.InfixExpr {}
ast.IsRefType {}
ast.MapInit {}
ast.MatchExpr {}
ast.OrExpr {}
ast.ParExpr {}
ast.RangeExpr {}
ast.SelectExpr {}
ast.SqlExpr {}
ast.TypeNode {}
ast.TypeOf {}
*/
ast.LockExpr {
// passthru
eprintln('Warning: locks not implemented yet in the native backend')
g.expr(expr)
}
ast.Likely {
// passthru
g.expr(expr)
}
ast.UnsafeExpr {
// passthru
g.expr(expr)
}
ast.StringInterLiteral {
g.n_error('Interlaced string literals are not yet supported in the native backend.') // , expr.pos)
}
else {
dump(typeof(expr).name)
dump(expr)
// g.v_error('expected string as argument for print', expr.pos)
g.n_error('expected string as argument for print') // , expr.pos)
}
}
}
fn (mut g Gen) fn_decl(node ast.FnDecl) {
if g.pref.is_verbose {
println(term.green('\n$node.name:'))
}
if node.is_deprecated {
g.warning('fn_decl: $node.name is deprecated', node.pos)
}
if node.is_builtin {
g.warning('fn_decl: $node.name is builtin', node.pos)
}
g.stack_var_pos = 0
g.register_function_address(node.name)
if g.pref.arch == .arm64 {
g.fn_decl_arm64(node)
} else {
g.fn_decl_amd64(node)
}
}
pub fn (mut g Gen) register_function_address(name string) {
if name == 'main.main' {
g.main_fn_addr = i64(g.buf.len)
} else {
g.fn_addr[name] = g.pos()
}
}
fn (mut g Gen) println(comment string) {
g.nlines++
if !g.pref.is_verbose {
return
}
addr := g.debug_pos.hex()
// println('$g.debug_pos "$addr"')
print(term.red(strings.repeat(`0`, 6 - addr.len) + addr + ' '))
for i := g.debug_pos; i < g.pos(); i++ {
s := g.buf[i].hex()
if s.len == 1 {
print(term.blue('0'))
}
gbihex := g.buf[i].hex()
hexstr := term.blue(gbihex) + ' '
print(hexstr)
}
g.debug_pos = g.buf.len
println(' ' + comment)
}
fn (mut g Gen) gen_forc_stmt(node ast.ForCStmt) {
if node.has_init {
g.stmts([node.init])
}
start := g.pos()
mut jump_addr := i64(0)
if node.has_cond {
cond := node.cond
match cond {
ast.InfixExpr {
// g.infix_expr(node.cond)
match mut cond.left {
ast.Ident {
lit := cond.right as ast.IntegerLiteral
g.cmp_var(cond.left.name, lit.val.int())
match cond.op {
.gt {
jump_addr = g.cjmp(.jle)
}
.lt {
jump_addr = g.cjmp(.jge)
}
else {
g.n_error('unsupported conditional in for-c loop')
}
}
}
else {
g.n_error('unhandled infix.left')
}
}
}
else {}
}
// dump(node.cond)
g.expr(node.cond)
}
g.stmts(node.stmts)
if node.has_inc {
g.stmts([node.inc])
}
g.jmp(int(0xffffffff - (g.pos() + 5 - start) + 1))
g.write32_at(jump_addr, int(g.pos() - jump_addr - 4))
// loop back
}
fn (mut g Gen) for_in_stmt(node ast.ForInStmt) {
if node.stmts.len == 0 {
// if no statements, just dont make it
return
}
if node.is_range {
// for a in node.cond .. node.high {
i := g.allocate_var(node.val_var, 8, 0) // iterator variable
g.expr(node.cond)
g.mov_reg_to_var(i, .rax) // i = node.cond // initial value
start := g.pos() // label-begin:
g.mov_var_to_reg(.rbx, i) // rbx = iterator value
g.expr(node.high) // final value
g.cmp_reg(.rbx, .rax) // rbx = iterator, rax = max value
jump_addr := g.cjmp(.jge) // leave loop if i is beyond end
g.stmts(node.stmts)
g.inc_var(node.val_var)
g.jmp(int(0xffffffff - (g.pos() + 5 - start) + 1))
g.write32_at(jump_addr, int(g.pos() - jump_addr - 4))
/*
} else if node.kind == .array {
} else if node.kind == .array_fixed {
} else if node.kind == .map {
} else if node.kind == .string {
} else if node.kind == .struct_ {
} else if it.kind in [.array, .string] || it.cond_type.has_flag(.variadic) {
} else if it.kind == .map {
*/
} else {
g.v_error('for-in statement is not yet implemented', node.pos)
}
}
pub fn (mut g Gen) gen_exit(node ast.Expr) {
// check node type and then call the code_gen method
g.code_gen.gen_exit(mut g, node)
}
fn (mut g Gen) stmt(node ast.Stmt) {
match node {
ast.AssignStmt {
g.assign_stmt(node)
}
ast.Block {
g.stmts(node.stmts)
}
ast.ConstDecl {}
ast.ExprStmt {
g.expr(node.expr)
}
ast.FnDecl {
g.fn_decl(node)
}
ast.ForCStmt {
g.gen_forc_stmt(node)
}
ast.ForInStmt {
g.for_in_stmt(node)
}
ast.ForStmt {
g.for_stmt(node)
}
ast.HashStmt {
words := node.val.split(' ')
for word in words {
if word.len != 2 {
g.n_error('opcodes format: xx xx xx xx')
}
b := unsafe { C.strtol(&char(word.str), 0, 16) }
// b := word.byte()
// println('"$word" $b')
g.write8(b)
}
}
ast.Module {}
ast.Return {
// dump(node.exprs[0])
// if in main
// zero := ast.IntegerLiteral{}
// g.gen_exit(zero)
// dump(node)
// dump(node.types)
mut s := '?' //${node.exprs[0].val.str()}'
e0 := node.exprs[0]
match e0 {
ast.IntegerLiteral {
g.mov64(.rax, e0.val.int())
}
ast.InfixExpr {
g.infix_expr(e0)
}
ast.CastExpr {
g.mov64(.rax, e0.expr.str().int())
// do the job
}
ast.StringLiteral {
s = e0.val.str()
g.expr(node.exprs[0])
g.mov64(.rax, g.allocate_string(s, 2))
}
ast.Ident {
g.expr(e0)
}
else {
g.n_error('unknown return type $e0.type_name()')
}
}
// intel specific
g.add8(.rsp, g.stackframe_size)
g.pop(.rbp)
g.ret()
}
ast.AsmStmt {
g.gen_asm_stmt(node)
}
ast.AssertStmt {
g.gen_assert(node)
}
ast.Import {} // do nothing here
ast.StructDecl {}
else {
eprintln('native.stmt(): bad node: ' + node.type_name())
}
}
}
fn C.strtol(str &char, endptr &&char, base int) int
fn (mut g Gen) gen_syscall(node ast.CallExpr) {
mut i := 0
mut ra := [Register.rax, .rdi, .rsi, .rdx]
for i < node.args.len {
expr := node.args[i].expr
if i >= ra.len {
g.warning('Too many arguments for syscall', node.pos)
return
}
match expr {
ast.IntegerLiteral {
g.mov(ra[i], expr.val.int())
}
ast.BoolLiteral {
g.mov(ra[i], if expr.val { 1 } else { 0 })
}
ast.SelectorExpr {
mut done := false
if expr.field_name == 'str' {
match expr.expr {
ast.StringLiteral {
s := expr.expr.val.replace('\\n', '\n')
g.allocate_string(s, 2)
g.mov64(ra[i], 1)
done = true
}
else {}
}
}
if !done {
g.v_error('Unknown selector in syscall argument type $expr', node.pos)
}
}
ast.StringLiteral {
if expr.language != .c {
g.warning('C.syscall expects c"string" or "string".str, C backend will crash',
node.pos)
}
s := expr.val.replace('\\n', '\n')
g.allocate_string(s, 2)
g.mov64(ra[i], 1)
}
else {
g.v_error('Unknown syscall $expr.type_name() argument type $expr', node.pos)
return
}
}
i++
}
g.syscall()
}
fn (mut g Gen) expr(node ast.Expr) {
match node {
ast.ParExpr {
g.expr(node.expr)
}
ast.ArrayInit {
g.n_error('array init expr not supported yet')
}
ast.BoolLiteral {
g.mov64(.rax, if node.val { 1 } else { 0 })
eprintln('bool literal')
}
ast.CallExpr {
if node.name == 'C.syscall' {
g.gen_syscall(node)
} else if node.name == 'exit' {
g.gen_exit(node.args[0].expr)
} else if node.name in ['println', 'print', 'eprintln', 'eprint'] {
expr := node.args[0].expr
g.gen_print_from_expr(expr, node.name)
} else {
g.call_fn(node)
}
}
ast.FloatLiteral {}
ast.Ident {
offset := g.get_var_offset(node.obj.name) // i := 0
// offset := g.get_var_offset(node.name)
// XXX this is intel specific
g.mov_var_to_reg(.rax, offset)
}
ast.IfExpr {
if node.is_comptime {
eprintln('Warning: ignored compile time conditional not yet supported for the native backend.')
} else {
g.if_expr(node)
}
}
ast.InfixExpr {
g.infix_expr(node)
// get variable by name
// save the result in rax
}
ast.IntegerLiteral {
g.mov64(.rax, node.val.int())
// g.gen_print_reg(.rax, 3, fd)
}
ast.PostfixExpr {
g.postfix_expr(node)
}
ast.StringLiteral {}
ast.StructInit {}
ast.GoExpr {
g.v_error('native backend doesnt support threads yet', node.pos)
}
else {
g.n_error('expr: unhandled node type: $node.type_name()')
}
}
}
/*
fn (mut g Gen) allocate_var(name string, size int, initial_val int) {
g.code_gen.allocate_var(name, size, initial_val)
}
*/
fn (mut g Gen) postfix_expr(node ast.PostfixExpr) {
if node.expr !is ast.Ident {
return
}
ident := node.expr as ast.Ident
var_name := ident.name
match node.op {
.inc {
g.inc_var(var_name)
}
.dec {
g.dec_var(var_name)
}
else {}
}
}
[noreturn]
pub fn (mut g Gen) n_error(s string) {
util.verror('native error', s)
}
pub fn (mut g Gen) warning(s string, pos token.Position) {
if g.pref.output_mode == .stdout {
werror := util.formatted_error('warning', s, g.pref.path, pos)
eprintln(werror)
} else {
g.warnings << errors.Warning{
file_path: g.pref.path
pos: pos
reporter: .gen
message: s
}
}
}
pub fn (mut g Gen) v_error(s string, pos token.Position) {
// TODO: store a file index in the Position too,
// so that the file path can be retrieved from the pos, instead
// of guessed from the pref.path ...
mut kind := 'error:'
if g.pref.output_mode == .stdout {
ferror := util.formatted_error(kind, s, g.pref.path, pos)
eprintln(ferror)
exit(1)
} else {
g.errors << errors.Error{
file_path: g.pref.path
pos: pos
reporter: .gen
message: s
}
}
}