322 lines
8.4 KiB
V
322 lines
8.4 KiB
V
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
|
|
// Use of this source code is governed by an MIT license
|
|
// that can be found in the LICENSE file.
|
|
module mt19937
|
|
|
|
import math.bits
|
|
import rand.util
|
|
|
|
/*
|
|
C++ functions for MT19937, with initialization improved 2002/2/10.
|
|
Coded by Takuji Nishimura and Makoto Matsumoto.
|
|
This is a faster version by taking Shawn Cokus's optimization,
|
|
Matthe Bellew's simplification, Isaku Wada's real version.
|
|
|
|
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. The names of its contributors may not be used to endorse or promote
|
|
products derived from this software without specific prior written
|
|
permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
Any feedback is very welcome.
|
|
http://www.math.keio.ac.jp/matumoto/emt.html
|
|
email: matumoto@math.keio.ac.jp
|
|
*/
|
|
const (
|
|
nn = 312
|
|
mm = 156
|
|
matrix_a = 0xB5026F5AA96619E9
|
|
um = 0xFFFFFFFF80000000
|
|
lm = 0x7FFFFFFF
|
|
inv_f64_limit = 1.0 / 9007199254740992.0
|
|
)
|
|
|
|
// A generator that uses the Mersenne Twister algorithm with period 2^19937
|
|
pub struct MT19937RNG {
|
|
mut:
|
|
state []u64 = calculate_state(util.time_seed_array(2), mut []u64{len: nn})
|
|
mti int = nn
|
|
next_rnd u32 = 0
|
|
has_next bool = false
|
|
}
|
|
|
|
fn calculate_state(seed_data []u32, mut state []u64) []u64 {
|
|
lo := u64(seed_data[0])
|
|
hi := u64(seed_data[1])
|
|
state[0] = u64((hi << 32) | lo)
|
|
for j := 1; j < nn; j++ {
|
|
state[j] = u64(6364136223846793005) * (state[j - 1] ^ (state[j - 1] >> 62)) + u64(j)
|
|
}
|
|
return state
|
|
}
|
|
|
|
// seed() - Set the seed, needs only two u32s in little endian format as [lower, higher]
|
|
pub fn (mut rng MT19937RNG) seed(seed_data []u32) {
|
|
if seed_data.len != 2 {
|
|
eprintln('mt19937 needs only two 32bit integers as seed: [lower, higher]')
|
|
exit(1)
|
|
}
|
|
rng.state = calculate_state(seed_data, mut rng.state)
|
|
rng.mti = nn
|
|
rng.next_rnd = 0
|
|
rng.has_next = false
|
|
}
|
|
|
|
// rng.u32() - return a pseudorandom 32bit int in [0, 2**32)
|
|
[inline]
|
|
pub fn (mut rng MT19937RNG) u32() u32 {
|
|
if rng.has_next {
|
|
rng.has_next = false
|
|
return rng.next_rnd
|
|
}
|
|
ans := rng.u64()
|
|
rng.next_rnd = u32(ans >> 32)
|
|
rng.has_next = true
|
|
return u32(ans & 0xffffffff)
|
|
}
|
|
|
|
// rng.u64() - return a pseudorandom 64bit int in [0, 2**64)
|
|
[inline]
|
|
pub fn (mut rng MT19937RNG) u64() u64 {
|
|
mag01 := [u64(0), u64(matrix_a)]
|
|
mut x := u64(0)
|
|
mut i := int(0)
|
|
if rng.mti >= nn {
|
|
for i = 0; i < nn - mm; i++ {
|
|
x = (rng.state[i] & um) | (rng.state[i + 1] & lm)
|
|
rng.state[i] = rng.state[i + mm] ^ (x >> 1) ^ mag01[int(x & 1)]
|
|
}
|
|
for i < nn - 1 {
|
|
x = (rng.state[i] & um) | (rng.state[i + 1] & lm)
|
|
rng.state[i] = rng.state[i + (mm - nn)] ^ (x >> 1) ^ mag01[int(x & 1)]
|
|
i++
|
|
}
|
|
x = (rng.state[nn - 1] & um) | (rng.state[0] & lm)
|
|
rng.state[nn - 1] = rng.state[mm - 1] ^ (x >> 1) ^ mag01[int(x & 1)]
|
|
rng.mti = 0
|
|
}
|
|
x = rng.state[rng.mti]
|
|
rng.mti++
|
|
x ^= (x >> 29) & 0x5555555555555555
|
|
x ^= (x << 17) & 0x71D67FFFEDA60000
|
|
x ^= (x << 37) & 0xFFF7EEE000000000
|
|
x ^= (x >> 43)
|
|
return x
|
|
}
|
|
|
|
// rng.int() - return a 32-bit signed (possibly negative) int
|
|
[inline]
|
|
pub fn (mut rng MT19937RNG) int() int {
|
|
return int(rng.u32())
|
|
}
|
|
|
|
// rng.i64() - return a 64-bit signed (possibly negative) i64
|
|
[inline]
|
|
pub fn (mut rng MT19937RNG) i64() i64 {
|
|
return i64(rng.u64())
|
|
}
|
|
|
|
// rng.int31() - return a 31bit positive pseudorandom integer
|
|
[inline]
|
|
pub fn (mut rng MT19937RNG) int31() int {
|
|
return int(rng.u32() >> 1)
|
|
}
|
|
|
|
// rng.int63() - return a 63bit positive pseudorandom integer
|
|
[inline]
|
|
pub fn (mut rng MT19937RNG) int63() i64 {
|
|
return i64(rng.u64() >> 1)
|
|
}
|
|
|
|
// rng.u32n(max) - return a 32bit u32 in [0, max)
|
|
[inline]
|
|
pub fn (mut rng MT19937RNG) u32n(max u32) u32 {
|
|
if max == 0 {
|
|
eprintln('max must be positive integer')
|
|
exit(1)
|
|
}
|
|
// Check SysRNG in system_rng.c.v for explanation
|
|
bit_len := bits.len_32(max)
|
|
if bit_len == 32 {
|
|
for {
|
|
value := rng.u32()
|
|
if value < max {
|
|
return value
|
|
}
|
|
}
|
|
} else {
|
|
mask := (u32(1) << (bit_len + 1)) - 1
|
|
for {
|
|
value := rng.u32() & mask
|
|
if value < max {
|
|
return value
|
|
}
|
|
}
|
|
}
|
|
return u32(0)
|
|
}
|
|
|
|
// rng.u64n(max) - return a 64bit u64 in [0, max)
|
|
[inline]
|
|
pub fn (mut rng MT19937RNG) u64n(max u64) u64 {
|
|
if max == 0 {
|
|
eprintln('max must be positive integer')
|
|
exit(1)
|
|
}
|
|
bit_len := bits.len_64(max)
|
|
if bit_len == 64 {
|
|
for {
|
|
value := rng.u64()
|
|
if value < max {
|
|
return value
|
|
}
|
|
}
|
|
} else {
|
|
mask := (u64(1) << (bit_len + 1)) - 1
|
|
for {
|
|
value := rng.u64() & mask
|
|
if value < max {
|
|
return value
|
|
}
|
|
}
|
|
}
|
|
return u64(0)
|
|
}
|
|
|
|
// rng.u32n(min, max) returns a pseudorandom u32 value that is guaranteed to be in [min, max)
|
|
[inline]
|
|
pub fn (mut rng MT19937RNG) u32_in_range(min, max u32) u32 {
|
|
if max <= min {
|
|
eprintln('max must be greater than min')
|
|
exit(1)
|
|
}
|
|
return min + rng.u32n(max - min)
|
|
}
|
|
|
|
// rng.u64n(min, max) returns a pseudorandom u64 value that is guaranteed to be in [min, max)
|
|
[inline]
|
|
pub fn (mut rng MT19937RNG) u64_in_range(min, max u64) u64 {
|
|
if max <= min {
|
|
eprintln('max must be greater than min')
|
|
exit(1)
|
|
}
|
|
return min + rng.u64n(max - min)
|
|
}
|
|
|
|
// rng.intn(max) - return a 32bit positive int in [0, max)
|
|
[inline]
|
|
pub fn (mut rng MT19937RNG) intn(max int) int {
|
|
if max <= 0 {
|
|
eprintln('max has to be positive.')
|
|
exit(1)
|
|
}
|
|
return int(rng.u32n(u32(max)))
|
|
}
|
|
|
|
// rng.i64n(max) - return a 64bit positive i64 in [0, max)
|
|
[inline]
|
|
pub fn (mut rng MT19937RNG) i64n(max i64) i64 {
|
|
if max <= 0 {
|
|
eprintln('max has to be positive.')
|
|
exit(1)
|
|
}
|
|
return i64(rng.u64n(u64(max)))
|
|
}
|
|
|
|
// rng.int_in_range(min, max) - return a 32bit positive int in [0, max)
|
|
[inline]
|
|
pub fn (mut rng MT19937RNG) int_in_range(min, max int) int {
|
|
if max <= min {
|
|
eprintln('max must be greater than min.')
|
|
exit(1)
|
|
}
|
|
return min + rng.intn(max - min)
|
|
}
|
|
|
|
// rng.i64_in_range(min, max) - return a 64bit positive i64 in [0, max)
|
|
[inline]
|
|
pub fn (mut rng MT19937RNG) i64_in_range(min, max i64) i64 {
|
|
if max <= min {
|
|
eprintln('max must be greater than min.')
|
|
exit(1)
|
|
}
|
|
return min + rng.i64n(max - min)
|
|
}
|
|
|
|
// rng.f32() - return a 32bit real in [0, 1)
|
|
[inline]
|
|
pub fn (mut rng MT19937RNG) f32() f32 {
|
|
return f32(rng.f64())
|
|
}
|
|
|
|
// rng.f64() - return 64bit real in [0, 1)
|
|
[inline]
|
|
pub fn (mut rng MT19937RNG) f64() f64 {
|
|
return f64(rng.u64() >> 11) * inv_f64_limit
|
|
}
|
|
|
|
// rng.f32n(max) - return 64bit real in [0, max)
|
|
[inline]
|
|
pub fn (mut rng MT19937RNG) f32n(max f32) f32 {
|
|
if max <= 0 {
|
|
eprintln('max has to be positive.')
|
|
exit(1)
|
|
}
|
|
return rng.f32() * max
|
|
}
|
|
|
|
// rng.f64n(max) - return 64bit real in [0, max)
|
|
[inline]
|
|
pub fn (mut rng MT19937RNG) f64n(max f64) f64 {
|
|
if max <= 0 {
|
|
eprintln('max has to be positive.')
|
|
exit(1)
|
|
}
|
|
return rng.f64() * max
|
|
}
|
|
|
|
// rng.f32_in_range(min, max) returns a pseudorandom f32 that lies in [min, max)
|
|
[inline]
|
|
pub fn (mut rng MT19937RNG) f32_in_range(min, max f32) f32 {
|
|
if max <= min {
|
|
eprintln('max must be greater than min')
|
|
exit(1)
|
|
}
|
|
return min + rng.f32n(max - min)
|
|
}
|
|
|
|
// rng.i64_in_range(min, max) returns a pseudorandom i64 that lies in [min, max)
|
|
[inline]
|
|
pub fn (mut rng MT19937RNG) f64_in_range(min, max f64) f64 {
|
|
if max <= min {
|
|
eprintln('max must be greater than min')
|
|
exit(1)
|
|
}
|
|
return min + rng.f64n(max - min)
|
|
}
|