399 lines
9.5 KiB
V
399 lines
9.5 KiB
V
module arrays
|
|
|
|
// Common arrays functions:
|
|
// - min / max - return the value of the minumum / maximum
|
|
// - idx_min / idx_max - return the index of the first minumum / maximum
|
|
// - merge - combine two sorted arrays and maintain sorted order
|
|
// - chunk - chunk array to arrays with n elements
|
|
// - window - get snapshots of the window of the given size sliding along array with the given step, where each snapshot is an array
|
|
// - TODO: zip - merge two arrays by interleaving e.g. arrays.zip([1,3,5], [2,4,6]) => [1,2,3,4,5,6]
|
|
|
|
// min returns the minimum value in the array
|
|
// Example: arrays.min([1,2,3,0,9]) // => 0
|
|
pub fn min<T>(a []T) ?T {
|
|
if a.len == 0 {
|
|
return error('.min called on an empty array')
|
|
}
|
|
mut val := a[0]
|
|
for e in a {
|
|
if e < val {
|
|
val = e
|
|
}
|
|
}
|
|
return val
|
|
}
|
|
|
|
// max returns the maximum the maximum value in the array
|
|
// Example: arrays.max([1,2,3,0,9]) // => 9
|
|
pub fn max<T>(a []T) ?T {
|
|
if a.len == 0 {
|
|
return error('.max called on an empty array')
|
|
}
|
|
mut val := a[0]
|
|
for e in a {
|
|
if e > val {
|
|
val = e
|
|
}
|
|
}
|
|
return val
|
|
}
|
|
|
|
// idx_min returns the index of the minimum value in the array
|
|
// Example: arrays.idx_min([1,2,3,0,9]) // => 3
|
|
pub fn idx_min<T>(a []T) ?int {
|
|
if a.len == 0 {
|
|
return error('.idx_min called on an empty array')
|
|
}
|
|
mut idx := 0
|
|
mut val := a[0]
|
|
for i, e in a {
|
|
if e < val {
|
|
val = e
|
|
idx = i
|
|
}
|
|
}
|
|
return idx
|
|
}
|
|
|
|
// idx_max returns the index of the maximum value in the array
|
|
// Example: arrays.idx_max([1,2,3,0,9]) // => 4
|
|
pub fn idx_max<T>(a []T) ?int {
|
|
if a.len == 0 {
|
|
return error('.idx_max called on an empty array')
|
|
}
|
|
mut idx := 0
|
|
mut val := a[0]
|
|
for i, e in a {
|
|
if e > val {
|
|
val = e
|
|
idx = i
|
|
}
|
|
}
|
|
return idx
|
|
}
|
|
|
|
// merge two sorted arrays (ascending) and maintain sorted order
|
|
// Example: arrays.merge([1,3,5,7], [2,4,6,8]) // => [1,2,3,4,5,6,7,8]
|
|
[direct_array_access]
|
|
pub fn merge<T>(a []T, b []T) []T {
|
|
mut m := []T{len: a.len + b.len}
|
|
mut ia := 0
|
|
mut ib := 0
|
|
mut j := 0
|
|
// TODO efficient approach to merge_desc where: a[ia] >= b[ib]
|
|
for ia < a.len && ib < b.len {
|
|
if a[ia] <= b[ib] {
|
|
m[j] = a[ia]
|
|
ia++
|
|
} else {
|
|
m[j] = b[ib]
|
|
ib++
|
|
}
|
|
j++
|
|
}
|
|
// a leftovers
|
|
for ia < a.len {
|
|
m[j] = a[ia]
|
|
ia++
|
|
j++
|
|
}
|
|
// b leftovers
|
|
for ib < b.len {
|
|
m[j] = b[ib]
|
|
ib++
|
|
j++
|
|
}
|
|
return m
|
|
}
|
|
|
|
// group n arrays into a single array of arrays with n elements
|
|
// (an error will be generated if the type annotation is omitted)
|
|
// Example: arrays.group<int>([1,2,3],[4,5,6]) // => [[1, 4], [2, 5], [3, 6]]
|
|
pub fn group<T>(lists ...[]T) [][]T {
|
|
mut length := if lists.len > 0 { lists[0].len } else { 0 }
|
|
// calculate length of output by finding shortest input array
|
|
for ndx in 1 .. lists.len {
|
|
if lists[ndx].len < length {
|
|
length = lists[ndx].len
|
|
}
|
|
}
|
|
|
|
if length > 0 {
|
|
mut arr := [][]T{cap: length}
|
|
// append all combined arrays into the resultant array
|
|
for ndx in 0 .. length {
|
|
mut zipped := []T{cap: lists.len}
|
|
// combine each list item for the ndx position into one array
|
|
for list_ndx in 0 .. lists.len {
|
|
zipped << lists[list_ndx][ndx]
|
|
}
|
|
arr << zipped
|
|
}
|
|
return arr
|
|
}
|
|
|
|
return [][]T{}
|
|
}
|
|
|
|
// chunk array into a single array of arrays where each element is the next `size` elements of the original
|
|
// Example: arrays.chunk([1, 2, 3, 4, 5, 6, 7, 8, 9], 2)) // => [[1, 2], [3, 4], [5, 6], [7, 8], [9]]
|
|
pub fn chunk<T>(list []T, size int) [][]T {
|
|
// allocate chunk array
|
|
mut chunks := [][]T{cap: list.len / size + if list.len % size == 0 { 0 } else { 1 }}
|
|
|
|
for i := 0; true; {
|
|
// check chunk size is greater than remaining element size
|
|
if list.len < i + size {
|
|
// check if there's no more element to chunk
|
|
if list.len <= i {
|
|
break
|
|
}
|
|
|
|
chunks << list[i..]
|
|
|
|
break
|
|
}
|
|
|
|
chunks << list[i..i + size]
|
|
i += size
|
|
}
|
|
|
|
return chunks
|
|
}
|
|
|
|
pub struct WindowAttribute {
|
|
size int
|
|
step int = 1
|
|
}
|
|
|
|
// get snapshots of the window of the given size sliding along array with the given step, where each snapshot is an array.
|
|
// - `size` - snapshot size
|
|
// - `step` - gap size between each snapshot, default is 1.
|
|
//
|
|
// Example: arrays.window([1, 2, 3, 4], size: 2) => [[1, 2], [2, 3], [3, 4]]
|
|
// Example: arrays.window([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], size: 3, step: 2) // => [[1, 2, 3], [3, 4, 5], [5, 6, 7], [7, 8, 9]]
|
|
pub fn window<T>(list []T, attr WindowAttribute) [][]T {
|
|
// allocate snapshot array
|
|
mut windows := [][]T{cap: list.len - attr.size + 1}
|
|
|
|
for i := 0; true; {
|
|
// check remaining elements size is less than snapshot size
|
|
if list.len < i + attr.size {
|
|
break
|
|
}
|
|
|
|
windows << list[i..i + attr.size]
|
|
i += attr.step
|
|
}
|
|
|
|
return windows
|
|
}
|
|
|
|
// sum up array, return nothing when array has no elements
|
|
//
|
|
// NOTICE: currently V has bug that cannot make sum function takes custom struct with + operator overloaded
|
|
// which means you can only pass array of numbers for now.
|
|
// TODO: Fix generic operator overloading detection issue.
|
|
// Example: arrays.sum<int>([1, 2, 3, 4, 5])? // => 15
|
|
pub fn sum<T>(list []T) ?T {
|
|
if list.len == 0 {
|
|
return error('Cannot sum up array of nothing.')
|
|
} else {
|
|
mut head := list[0]
|
|
|
|
for i, e in list {
|
|
if i == 0 {
|
|
continue
|
|
} else {
|
|
head += e
|
|
}
|
|
}
|
|
|
|
return head
|
|
}
|
|
}
|
|
|
|
// accumulates values with the first element and applying providing operation to current accumulator value and each elements.
|
|
// If the array is empty, then returns error.
|
|
// Example: arrays.reduce([1, 2, 3, 4, 5], fn (t1 int, t2 int) int { return t1 * t2 })? // => 120
|
|
pub fn reduce<T>(list []T, reduce_op fn (t1 T, t2 T) T) ?T {
|
|
if list.len == 0 {
|
|
return error('Cannot reduce array of nothing.')
|
|
} else {
|
|
mut value := list[0]
|
|
|
|
for i, e in list {
|
|
if i == 0 {
|
|
continue
|
|
} else {
|
|
value = reduce_op(value, e)
|
|
}
|
|
}
|
|
|
|
return value
|
|
}
|
|
}
|
|
|
|
// accumulates values with providing initial value and applying providing operation to current accumulator value and each elements.
|
|
// Example: arrays.fold<string, byte>(['H', 'e', 'l', 'l', 'o'], 0, fn (r int, t string) int { return r + t[0] }) // => 149
|
|
pub fn fold<T, R>(list []T, init R, fold_op fn (r R, t T) R) R {
|
|
mut value := init
|
|
|
|
for e in list {
|
|
value = fold_op(value, e)
|
|
}
|
|
|
|
return value
|
|
}
|
|
|
|
// flattens n + 1 dimensional array into n dimensional array
|
|
// Example: arrays.flatten<int>([[1, 2, 3], [4, 5]]) // => [1, 2, 3, 4, 5]
|
|
pub fn flatten<T>(list [][]T) []T {
|
|
// calculate required capacity
|
|
mut required_size := 0
|
|
|
|
for e1 in list {
|
|
for _ in e1 {
|
|
required_size += 1
|
|
}
|
|
}
|
|
|
|
// allocate flattened array
|
|
mut result := []T{cap: required_size}
|
|
|
|
for e1 in list {
|
|
for e2 in e1 {
|
|
result << e2
|
|
}
|
|
}
|
|
|
|
return result
|
|
}
|
|
|
|
// grouping list of elements with given key selector.
|
|
// Example: arrays.group_by<int, string>(['H', 'el', 'lo'], fn (v string) int { return v.len }) // => {1: ['H'], 2: ['el', 'lo']}
|
|
pub fn group_by<K, V>(list []V, grouping_op fn (v V) K) map[K][]V {
|
|
mut result := map[K][]V{}
|
|
|
|
for v in list {
|
|
key := grouping_op(v)
|
|
|
|
// check if key exists, if not, then create a new array with matched value, otherwise append.
|
|
if key in result {
|
|
result[key] << v
|
|
} else {
|
|
result[key] = [v]
|
|
}
|
|
}
|
|
|
|
return result
|
|
}
|
|
|
|
// concatenate an array with an arbitrary number of additional values
|
|
//
|
|
// NOTE: if you have two arrays, you should simply use the `<<` operator directly
|
|
// Example: arrays.concat([1, 2, 3], 4, 5, 6) == [1, 2, 3, 4, 5, 6] // => true
|
|
// Example: arrays.concat([1, 2, 3], ...[4, 5, 6]) == [1, 2, 3, 4, 5, 6] // => true
|
|
// Example: arr << [4, 5, 6] // does what you need if arr is mutable
|
|
[deprecated]
|
|
pub fn concat<T>(a []T, b ...T) []T {
|
|
mut m := []T{cap: a.len + b.len}
|
|
|
|
m << a
|
|
m << b
|
|
|
|
return m
|
|
}
|
|
|
|
// zip returns a new array by interleaving the source arrays.
|
|
//
|
|
// NOTE: The two arrays do not need to be equal sizes
|
|
// Example: arrays.zip([1, 3, 5, 7], [2, 4, 6, 8, 10]) // => [1, 2, 3, 4, 5, 6, 7, 8, 10]
|
|
pub fn zip<T>(a []T, b []T) []T {
|
|
mut m := []T{cap: a.len + b.len}
|
|
mut i := 0
|
|
for i < m.cap {
|
|
// short-circuit the rest of the loop as soon as we can
|
|
if i >= a.len {
|
|
m << b[i..]
|
|
break
|
|
}
|
|
if i >= b.len {
|
|
m << a[i..]
|
|
break
|
|
}
|
|
m << a[i]
|
|
m << b[i]
|
|
i++
|
|
}
|
|
return m
|
|
}
|
|
|
|
// returns the smallest element >= val, requires `arr` to be sorted
|
|
// Example: arrays.lower_bound([2, 4, 6, 8], 3)? // => 4
|
|
pub fn lower_bound<T>(arr []T, val T) ?T {
|
|
if arr.len == 0 {
|
|
return error('.lower_bound called on an empty array')
|
|
}
|
|
mut left, mut right := 0, arr.len - 1
|
|
for ; left <= right; {
|
|
idx := (left + right) / 2
|
|
elem := arr[idx]
|
|
if elem < val {
|
|
left = idx + 1
|
|
} else {
|
|
right = idx - 1
|
|
}
|
|
}
|
|
if left >= arr.len {
|
|
return error('')
|
|
} else {
|
|
return arr[left]
|
|
}
|
|
}
|
|
|
|
// returns the largest element <= val, requires `arr` to be sorted
|
|
// Example: arrays.upper_bound([2, 4, 6, 8], 3)? // => 2
|
|
pub fn upper_bound<T>(arr []T, val T) ?T {
|
|
if arr.len == 0 {
|
|
return error('.upper_bound called on an empty array')
|
|
}
|
|
mut left, mut right := 0, arr.len - 1
|
|
for ; left <= right; {
|
|
idx := (left + right) / 2
|
|
elem := arr[idx]
|
|
if elem > val {
|
|
right = idx - 1
|
|
} else {
|
|
left = idx + 1
|
|
}
|
|
}
|
|
if right < 0 {
|
|
return error('')
|
|
} else {
|
|
return arr[right]
|
|
}
|
|
}
|
|
|
|
// binary search, requires `arr` to be sorted, returns index of found item or error.
|
|
// Binary searches on sorted lists can be faster than other array searches because at maximum
|
|
// the algorithm only has to traverse log N elements
|
|
// Example: arrays.binary_search([1, 2, 3, 4], 4) ? // => 3
|
|
pub fn binary_search<T>(arr []T, target T) ?int {
|
|
mut left := 0
|
|
mut right := arr.len - 1
|
|
for ; left <= right; {
|
|
idx := (left + right) / 2
|
|
elem := arr[idx]
|
|
if elem == target {
|
|
return idx
|
|
}
|
|
if elem < target {
|
|
left = idx + 1
|
|
} else {
|
|
right = idx - 1
|
|
}
|
|
}
|
|
return error('')
|
|
}
|