223 lines
5.2 KiB
V
223 lines
5.2 KiB
V
// Copyright (c) 2019-2022 Alexander Medvednikov. All rights reserved.
|
|
// Use of this source code is governed by an MIT license
|
|
// that can be found in the LICENSE file.
|
|
module math
|
|
|
|
// aprox_sin returns an approximation of sin(a) made using lolremez
|
|
pub fn aprox_sin(a f64) f64 {
|
|
a0 := 1.91059300966915117e-31
|
|
a1 := 1.00086760103908896
|
|
a2 := -1.21276126894734565e-2
|
|
a3 := -1.38078780785773762e-1
|
|
a4 := -2.67353392911981221e-2
|
|
a5 := 2.08026600266304389e-2
|
|
a6 := -3.03996055049204407e-3
|
|
a7 := 1.38235642404333740e-4
|
|
return a0 + a * (a1 + a * (a2 + a * (a3 + a * (a4 + a * (a5 + a * (a6 + a * a7))))))
|
|
}
|
|
|
|
// aprox_cos returns an approximation of sin(a) made using lolremez
|
|
pub fn aprox_cos(a f64) f64 {
|
|
a0 := 9.9995999154986614e-1
|
|
a1 := 1.2548995793001028e-3
|
|
a2 := -5.0648546280678015e-1
|
|
a3 := 1.2942246466519995e-2
|
|
a4 := 2.8668384702547972e-2
|
|
a5 := 7.3726485210586547e-3
|
|
a6 := -3.8510875386947414e-3
|
|
a7 := 4.7196604604366623e-4
|
|
a8 := -1.8776444013090451e-5
|
|
return a0 + a * (a1 + a * (a2 + a * (a3 + a * (a4 + a * (a5 + a * (a6 + a * (a7 + a * a8)))))))
|
|
}
|
|
|
|
// copysign returns a value with the magnitude of x and the sign of y
|
|
[inline]
|
|
pub fn copysign(x f64, y f64) f64 {
|
|
return f64_from_bits((f64_bits(x) & ~sign_mask) | (f64_bits(y) & sign_mask))
|
|
}
|
|
|
|
// degrees converts from radians to degrees.
|
|
[inline]
|
|
pub fn degrees(radians f64) f64 {
|
|
return radians * (180.0 / pi)
|
|
}
|
|
|
|
// angle_diff calculates the difference between angles in radians
|
|
[inline]
|
|
pub fn angle_diff(radian_a f64, radian_b f64) f64 {
|
|
mut delta := fmod(radian_b - radian_a, tau)
|
|
delta = fmod(delta + 1.5 * tau, tau)
|
|
delta -= .5 * tau
|
|
return delta
|
|
}
|
|
|
|
[params]
|
|
pub struct DigitParams {
|
|
base int = 10
|
|
reverse bool
|
|
}
|
|
|
|
// digits returns an array of the digits of `num` in the given optional `base`.
|
|
// The `num` argument accepts any integer type (i8|i16|int|isize|i64), and will be cast to i64
|
|
// The `base:` argument is optional, it will default to base: 10.
|
|
// This function returns an array of the digits in reverse order i.e.:
|
|
// Example: assert math.digits(12345, base: 10) == [5,4,3,2,1]
|
|
// You can also use it, with an explicit `reverse: true` parameter,
|
|
// (it will do a reverse of the result array internally => slower):
|
|
// Example: assert math.digits(12345, reverse: true) == [1,2,3,4,5]
|
|
pub fn digits(num i64, params DigitParams) []int {
|
|
// set base to 10 initially and change only if base is explicitly set.
|
|
mut b := params.base
|
|
if b < 2 {
|
|
panic('digits: Cannot find digits of n with base $b')
|
|
}
|
|
mut n := num
|
|
mut sign := 1
|
|
if n < 0 {
|
|
sign = -1
|
|
n = -n
|
|
}
|
|
|
|
mut res := []int{}
|
|
if n == 0 {
|
|
// short-circuit and return 0
|
|
res << 0
|
|
return res
|
|
}
|
|
for n != 0 {
|
|
next_n := n / b
|
|
res << int(n - next_n * b)
|
|
n = next_n
|
|
}
|
|
|
|
if sign == -1 {
|
|
res[res.len - 1] *= sign
|
|
}
|
|
|
|
if params.reverse {
|
|
res = res.reverse()
|
|
}
|
|
|
|
return res
|
|
}
|
|
|
|
// count_digits return the number of digits in the number passed.
|
|
// Number argument accepts any integer type (i8|i16|int|isize|i64) and will be cast to i64
|
|
pub fn count_digits(number i64) int {
|
|
mut n := number
|
|
if n == 0 {
|
|
return 1
|
|
}
|
|
mut c := 0
|
|
for n != 0 {
|
|
n = n / 10
|
|
c++
|
|
}
|
|
return c
|
|
}
|
|
|
|
// minmax returns the minimum and maximum value of the two provided.
|
|
pub fn minmax(a f64, b f64) (f64, f64) {
|
|
if a < b {
|
|
return a, b
|
|
}
|
|
return b, a
|
|
}
|
|
|
|
// clamp returns x constrained between a and b
|
|
[inline]
|
|
pub fn clamp(x f64, a f64, b f64) f64 {
|
|
if x < a {
|
|
return a
|
|
}
|
|
if x > b {
|
|
return b
|
|
}
|
|
return x
|
|
}
|
|
|
|
// sign returns the corresponding sign -1.0, 1.0 of the provided number.
|
|
// if n is not a number, its sign is nan too.
|
|
[inline]
|
|
pub fn sign(n f64) f64 {
|
|
if is_nan(n) {
|
|
return nan()
|
|
}
|
|
return copysign(1.0, n)
|
|
}
|
|
|
|
// signi returns the corresponding sign -1.0, 1.0 of the provided number.
|
|
[inline]
|
|
pub fn signi(n f64) int {
|
|
return int(copysign(1.0, n))
|
|
}
|
|
|
|
// radians converts from degrees to radians.
|
|
[inline]
|
|
pub fn radians(degrees f64) f64 {
|
|
return degrees * (pi / 180.0)
|
|
}
|
|
|
|
// signbit returns a value with the boolean representation of the sign for x
|
|
[inline]
|
|
pub fn signbit(x f64) bool {
|
|
return f64_bits(x) & sign_mask != 0
|
|
}
|
|
|
|
// tolerance checks if a and b difference are less than or equal to the tolerance value
|
|
pub fn tolerance(a f64, b f64, tol f64) bool {
|
|
mut ee := tol
|
|
// Multiplying by ee here can underflow denormal values to zero.
|
|
// Check a==b so that at least if a and b are small and identical
|
|
// we say they match.
|
|
if a == b {
|
|
return true
|
|
}
|
|
mut d := a - b
|
|
if d < 0 {
|
|
d = -d
|
|
}
|
|
// note: b is correct (expected) value, a is actual value.
|
|
// make error tolerance a fraction of b, not a.
|
|
if b != 0 {
|
|
ee = ee * b
|
|
if ee < 0 {
|
|
ee = -ee
|
|
}
|
|
}
|
|
return d < ee
|
|
}
|
|
|
|
// close checks if a and b are within 1e-14 of each other
|
|
pub fn close(a f64, b f64) bool {
|
|
return tolerance(a, b, 1e-14)
|
|
}
|
|
|
|
// veryclose checks if a and b are within 4e-16 of each other
|
|
pub fn veryclose(a f64, b f64) bool {
|
|
return tolerance(a, b, 4e-16)
|
|
}
|
|
|
|
// alike checks if a and b are equal
|
|
pub fn alike(a f64, b f64) bool {
|
|
if is_nan(a) && is_nan(b) {
|
|
return true
|
|
} else if a == b {
|
|
return signbit(a) == signbit(b)
|
|
}
|
|
return false
|
|
}
|
|
|
|
fn is_odd_int(x f64) bool {
|
|
xi, xf := modf(x)
|
|
return xf == 0 && (i64(xi) & 1) == 1
|
|
}
|
|
|
|
fn is_neg_int(x f64) bool {
|
|
if x < 0 {
|
|
_, xf := modf(x)
|
|
return xf == 0
|
|
}
|
|
return false
|
|
}
|