297 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			297 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			V
		
	
	
| // Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
 | |
| // Use of this source code is governed by an MIT license
 | |
| // that can be found in the LICENSE file.
 | |
| module bits
 | |
| 
 | |
| const (
 | |
| // See http://supertech.csail.mit.edu/papers/debruijn.pdf
 | |
| 	de_bruijn32 = u32(0x077CB531)
 | |
| 	de_bruijn32tab = [byte(0), 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
 | |
| 	31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9,
 | |
| 	]
 | |
| 	de_bruijn64 = u64(0x03f79d71b4ca8b09)
 | |
| 	de_bruijn64tab = [byte(0), 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4,
 | |
| 	62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5,
 | |
| 	63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11,
 | |
| 	54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
 | |
| 	]
 | |
| )
 | |
| 
 | |
| const (
 | |
| 	m0 = 0x5555555555555555 // 01010101 ...
 | |
| 	m1 = 0x3333333333333333 // 00110011 ...
 | |
| 	m2 = 0x0f0f0f0f0f0f0f0f // 00001111 ...
 | |
| 	m3 = 0x00ff00ff00ff00ff // etc.
 | |
| 	m4 = 0x0000ffff0000ffff
 | |
| )
 | |
| // --- LeadingZeros ---
 | |
| // leading_zeros8 returns the number of leading zero bits in x; the result is 8 for x == 0.
 | |
| pub fn leading_zeros8(x byte) int {
 | |
| 	return 8 - len8(x)
 | |
| }
 | |
| 
 | |
| // leading_zeros16 returns the number of leading zero bits in x; the result is 16 for x == 0.
 | |
| pub fn leading_zeros16(x u16) int {
 | |
| 	return 16 - len16(x)
 | |
| }
 | |
| 
 | |
| // leading_zeros32 returns the number of leading zero bits in x; the result is 32 for x == 0.
 | |
| pub fn leading_zeros32(x u32) int {
 | |
| 	return 32 - len32(x)
 | |
| }
 | |
| 
 | |
| // leading_zeros64 returns the number of leading zero bits in x; the result is 64 for x == 0.
 | |
| pub fn leading_zeros64(x u64) int {
 | |
| 	return 64 - len64(x)
 | |
| }
 | |
| 
 | |
| // --- TrailingZeros ---
 | |
| // trailing_zeros8 returns the number of trailing zero bits in x; the result is 8 for x == 0.
 | |
| pub fn trailing_zeros8(x byte) int {
 | |
| 	return int(ntz8_tab[x])
 | |
| }
 | |
| 
 | |
| // trailing_zeros16 returns the number of trailing zero bits in x; the result is 16 for x == 0.
 | |
| pub fn trailing_zeros16(x u16) int {
 | |
| 	if x == 0 {
 | |
| 		return 16
 | |
| 	}
 | |
| 	// see comment in trailing_zeros64
 | |
| 	return int(de_bruijn32tab[u32(x & -x) * de_bruijn32>>(32 - 5)])
 | |
| }
 | |
| 
 | |
| // trailing_zeros32 returns the number of trailing zero bits in x; the result is 32 for x == 0.
 | |
| pub fn trailing_zeros32(x u32) int {
 | |
| 	if x == 0 {
 | |
| 		return 32
 | |
| 	}
 | |
| 	// see comment in trailing_zeros64
 | |
| 	return int(de_bruijn32tab[(x & -x) * de_bruijn32>>(32 - 5)])
 | |
| }
 | |
| 
 | |
| // trailing_zeros64 returns the number of trailing zero bits in x; the result is 64 for x == 0.
 | |
| pub fn trailing_zeros64(x u64) int {
 | |
| 	if x == 0 {
 | |
| 		return 64
 | |
| 	}
 | |
| 	// If popcount is fast, replace code below with return popcount(^x & (x - 1)).
 | |
| 	//
 | |
| 	// x & -x leaves only the right-most bit set in the word. Let k be the
 | |
| 	// index of that bit. Since only a single bit is set, the value is two
 | |
| 	// to the power of k. Multiplying by a power of two is equivalent to
 | |
| 	// left shifting, in this case by k bits. The de Bruijn (64 bit) constant
 | |
| 	// is such that all six bit, consecutive substrings are distinct.
 | |
| 	// Therefore, if we have a left shifted version of this constant we can
 | |
| 	// find by how many bits it was shifted by looking at which six bit
 | |
| 	// substring ended up at the top of the word.
 | |
| 	// (Knuth, volume 4, section 7.3.1)
 | |
| 	return int(de_bruijn64tab[(x & -x) * de_bruijn64>>(64 - 6)])
 | |
| }
 | |
| 
 | |
| // --- OnesCount ---
 | |
| // ones_count8 returns the number of one bits ("population count") in x.
 | |
| pub fn ones_count8(x byte) int {
 | |
| 	return int(pop8_tab[x])
 | |
| }
 | |
| 
 | |
| // ones_count16 returns the number of one bits ("population count") in x.
 | |
| pub fn ones_count16(x u16) int {
 | |
| 	return int(pop8_tab[x>>8] + pop8_tab[x & u16(0xff)])
 | |
| }
 | |
| 
 | |
| // ones_count32 returns the number of one bits ("population count") in x.
 | |
| pub fn ones_count32(x u32) int {
 | |
| 	return int(pop8_tab[x>>24] + pop8_tab[x>>16 & 0xff] + pop8_tab[x>>8 & 0xff] + pop8_tab[x & u32(0xff)])
 | |
| }
 | |
| 
 | |
| // ones_count64 returns the number of one bits ("population count") in x.
 | |
| pub fn ones_count64(x u64) int {
 | |
| 	// Implementation: Parallel summing of adjacent bits.
 | |
| 	// See "Hacker's Delight", Chap. 5: Counting Bits.
 | |
| 	// The following pattern shows the general approach:
 | |
| 	//
 | |
| 	// x = x>>1&(m0&m) + x&(m0&m)
 | |
| 	// x = x>>2&(m1&m) + x&(m1&m)
 | |
| 	// x = x>>4&(m2&m) + x&(m2&m)
 | |
| 	// x = x>>8&(m3&m) + x&(m3&m)
 | |
| 	// x = x>>16&(m4&m) + x&(m4&m)
 | |
| 	// x = x>>32&(m5&m) + x&(m5&m)
 | |
| 	// return int(x)
 | |
| 	//
 | |
| 	// Masking (& operations) can be left away when there's no
 | |
| 	// danger that a field's sum will carry over into the next
 | |
| 	// field: Since the result cannot be > 64, 8 bits is enough
 | |
| 	// and we can ignore the masks for the shifts by 8 and up.
 | |
| 	// Per "Hacker's Delight", the first line can be simplified
 | |
| 	// more, but it saves at best one instruction, so we leave
 | |
| 	// it alone for clarity.
 | |
| 	m := u64(1<<64) - 1
 | |
| 	mut y := u64(x>>u64(1) & (m0 & m)) + u64(x & (m0 & m))
 | |
| 	y = u64(y>>u64(2) & (m1 & m)) + u64(y & (m1 & m))
 | |
| 	y = u64(u64(y>>4) + y) & (m2 & m)
 | |
| 	y += y>>8
 | |
| 	y += y>>16
 | |
| 	y += y>>32
 | |
| 	return int(y) & ((1<<7) - 1)
 | |
| }
 | |
| 
 | |
| // --- RotateLeft ---
 | |
| // rotate_left_8 returns the value of x rotated left by (k mod 8) bits.
 | |
| // To rotate x right by k bits, call rotate_left_8(x, -k).
 | |
| //
 | |
| // This function's execution time does not depend on the inputs.
 | |
| [inline]
 | |
| pub fn rotate_left_8(x byte, k int) byte {
 | |
| 	n := byte(8)
 | |
| 	s := byte(k) & byte(n - byte(1))
 | |
| 	return byte((x<<s) | (x>>(n - s)))
 | |
| }
 | |
| 
 | |
| // rotate_left_16 returns the value of x rotated left by (k mod 16) bits.
 | |
| // To rotate x right by k bits, call rotate_left_16(x, -k).
 | |
| //
 | |
| // This function's execution time does not depend on the inputs.
 | |
| [inline]
 | |
| pub fn rotate_left_16(x u16, k int) u16 {
 | |
| 	n := u16(16)
 | |
| 	s := u16(k) & (n - u16(1))
 | |
| 	return u16((x<<s) | (x>>(n - s)))
 | |
| }
 | |
| 
 | |
| // rotate_left_32 returns the value of x rotated left by (k mod 32) bits.
 | |
| // To rotate x right by k bits, call rotate_left_32(x, -k).
 | |
| //
 | |
| // This function's execution time does not depend on the inputs.
 | |
| [inline]
 | |
| pub fn rotate_left_32(x u32, k int) u32 {
 | |
| 	n := u32(32)
 | |
| 	s := u32(k) & (n - u32(1))
 | |
| 	return u32(u32(x<<s) | u32(x>>(n - s)))
 | |
| }
 | |
| 
 | |
| // rotate_left_64 returns the value of x rotated left by (k mod 64) bits.
 | |
| // To rotate x right by k bits, call rotate_left_64(x, -k).
 | |
| //
 | |
| // This function's execution time does not depend on the inputs.
 | |
| [inline]
 | |
| pub fn rotate_left_64(x u64, k int) u64 {
 | |
| 	n := u64(64)
 | |
| 	s := u64(k) & (n - u64(1))
 | |
| 	return u64(u64(x<<s) | u64(x>>(n - s)))
 | |
| }
 | |
| 
 | |
| // --- Reverse ---
 | |
| // reverse8 returns the value of x with its bits in reversed order.
 | |
| [inline]
 | |
| pub fn reverse8(x byte) byte {
 | |
| 	return rev8_tab[x]
 | |
| }
 | |
| 
 | |
| // reverse16 returns the value of x with its bits in reversed order.
 | |
| [inline]
 | |
| pub fn reverse16(x u16) u16 {
 | |
| 	return u16(rev8_tab[x>>8]) | u16(u16(rev8_tab[x & u16(0xff)])<<8)
 | |
| }
 | |
| 
 | |
| // reverse32 returns the value of x with its bits in reversed order.
 | |
| [inline]
 | |
| pub fn reverse32(x u32) u32 {
 | |
| 	m := u64(1<<32) - 1
 | |
| 	mut y := u32(x>>u32(1) & u32(m0 & m) | u32(u32(x & u32(m0 & m))<<1))
 | |
| 	y = u32(y>>u32(2) & u32(m1 & m) | u32(u32(y & u32(m1 & m))<<u32(2)))
 | |
| 	y = u32(y>>u32(4) & u32(m2 & m) | u32(u32(y & u32(m2 & m))<<u32(4)))
 | |
| 	return reverse_bytes32(y)
 | |
| }
 | |
| 
 | |
| // reverse64 returns the value of x with its bits in reversed order.
 | |
| [inline]
 | |
| pub fn reverse64(x u64) u64 {
 | |
| 	m := u64(1<<64) - 1
 | |
| 	mut y := u64(x>>u64(1) & (m0 & m) | u64(u64(x & (m0 & m))<<1))
 | |
| 	y = u64(y>>u64(2) & (m1 & m) | u64(u64(y & (m1 & m))<<2))
 | |
| 	y = u64(y>>u64(4) & (m2 & m) | u64(u64(y & (m2 & m))<<4))
 | |
| 	return reverse_bytes64(y)
 | |
| }
 | |
| 
 | |
| // --- ReverseBytes ---
 | |
| // reverse_bytes16 returns the value of x with its bytes in reversed order.
 | |
| //
 | |
| // This function's execution time does not depend on the inputs.
 | |
| [inline]
 | |
| pub fn reverse_bytes16(x u16) u16 {
 | |
| 	return u16(x>>8) | u16(x<<8)
 | |
| }
 | |
| 
 | |
| // reverse_bytes32 returns the value of x with its bytes in reversed order.
 | |
| //
 | |
| // This function's execution time does not depend on the inputs.
 | |
| [inline]
 | |
| pub fn reverse_bytes32(x u32) u32 {
 | |
| 	m := u64(1<<32) - 1
 | |
| 	y := u32(x>>u32(8) & u32(m3 & m) | u32(u32(x & u32(m3 & m))<<u32(8)))
 | |
| 	return u32(y>>16) | u32(y<<16)
 | |
| }
 | |
| 
 | |
| // reverse_bytes64 returns the value of x with its bytes in reversed order.
 | |
| //
 | |
| // This function's execution time does not depend on the inputs.
 | |
| [inline]
 | |
| pub fn reverse_bytes64(x u64) u64 {
 | |
| 	m := u64(1<<64) - 1
 | |
| 	mut y := u64(x>>u64(8) & (m3 & m) | u64(u64(x & (m3 & m))<<u64(8)))
 | |
| 	y = u64(y>>u64(16) & (m4 & m) | u64(u64(y & (m4 & m))<<u64(16)))
 | |
| 	return u64(y>>32) | u64(y<<32)
 | |
| }
 | |
| 
 | |
| // --- Len ---
 | |
| // len8 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
 | |
| pub fn len8(x byte) int {
 | |
| 	return int(len8_tab[x])
 | |
| }
 | |
| 
 | |
| // len16 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
 | |
| pub fn len16(x u16) int {
 | |
| 	mut y := x
 | |
| 	mut n := 0
 | |
| 	if y >= 1<<8 {
 | |
| 		y >>= 8
 | |
| 		n = 8
 | |
| 	}
 | |
| 	return n + int(len8_tab[y])
 | |
| }
 | |
| 
 | |
| // len32 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
 | |
| pub fn len32(x u32) int {
 | |
| 	mut y := x
 | |
| 	mut n := 0
 | |
| 	if y >= 1<<16 {
 | |
| 		y >>= 16
 | |
| 		n = 16
 | |
| 	}
 | |
| 	if y >= 1<<8 {
 | |
| 		y >>= 8
 | |
| 		n += 8
 | |
| 	}
 | |
| 	return n + int(len8_tab[y])
 | |
| }
 | |
| 
 | |
| // len64 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
 | |
| pub fn len64(x u64) int {
 | |
| 	mut y := x
 | |
| 	mut n := 0
 | |
| 	if y >= u64(1)<<u64(32) {
 | |
| 		y >>= 32
 | |
| 		n = 32
 | |
| 	}
 | |
| 	if y >= u64(1)<<u64(16) {
 | |
| 		y >>= 16
 | |
| 		n += 16
 | |
| 	}
 | |
| 	if y >= u64(1)<<u64(8) {
 | |
| 		y >>= 8
 | |
| 		n += 8
 | |
| 	}
 | |
| 	return n + int(len8_tab[y])
 | |
| }
 | |
| 
 |