v/vlib/v/checker/checker.v

780 lines
19 KiB
V

// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module checker
import (
v.ast
v.table
v.token
os
filepath
)
const (
max_nr_errors = 50
)
pub struct Checker {
table &table.Table
mut:
file ast.File
nr_errors int
errors []string
expected_type table.Type
}
pub fn new_checker(table &table.Table) Checker {
return Checker{
table: table
}
}
pub fn (c mut Checker) check(ast_file ast.File) {
c.file = ast_file
for stmt in ast_file.stmts {
c.stmt(stmt)
}
/*
println('all types:')
for t in c.table.types {
println(t.name + ' - ' + t.kind.str())
}
*/
if c.nr_errors > 0 {
exit(1)
}
}
pub fn (c mut Checker) check2(ast_file ast.File) []string {
c.file = ast_file
for stmt in ast_file.stmts {
c.stmt(stmt)
}
return c.errors
}
pub fn (c mut Checker) check_files(ast_files []ast.File) {
// TODO: temp fix, impl proper solution
for file in ast_files {
c.file = file
for stmt in file.stmts {
match mut stmt {
ast.ConstDecl {
c.stmt(*it)
}
else {}
}
}
}
for file in ast_files {
c.check(file)
}
}
pub fn (c mut Checker) check_struct_init(struct_init ast.StructInit) table.Type {
// typ := c.table.find_type(struct_init.typ.typ.name) or {
// c.error('unknown struct: $struct_init.typ.typ.name', struct_init.pos)
// panic('')
// }
typ_sym := c.table.get_type_symbol(struct_init.typ)
// println('check struct $typ_sym.name')
match typ_sym.kind {
.placeholder {
c.error('unknown struct: $typ_sym.name', struct_init.pos)
}
.struct_ {
info := typ_sym.info as table.Struct
if struct_init.fields.len == 0 {
// Short syntax TODO check
return struct_init.typ
}
if struct_init.exprs.len > info.fields.len {
c.error('too many fields', struct_init.pos)
}
for i, expr in struct_init.exprs {
// struct_field info.
field_name := struct_init.fields[i]
mut field := info.fields[i]
mut found_field := false
for f in info.fields {
if f.name == field_name {
field = f
found_field = true
break
}
}
if !found_field {
c.error('struct init: no such field `$field_name` for struct `$typ_sym.name`', struct_init.pos)
}
expr_type := c.expr(expr)
expr_type_sym := c.table.get_type_symbol(expr_type)
field_type_sym := c.table.get_type_symbol(field.typ)
if !c.table.check(expr_type, field.typ) {
c.error('cannot assign `$expr_type_sym.name` as `$field_type_sym.name` for field `$field.name`', struct_init.pos)
}
}
}
else {}
}
return struct_init.typ
}
pub fn (c mut Checker) infix_expr(infix_expr ast.InfixExpr) table.Type {
// println('checker: infix expr(op $infix_expr.op.str())')
left_type := c.expr(infix_expr.left)
right_type := c.expr(infix_expr.right)
if !c.table.check(right_type, left_type) {
left := c.table.get_type_symbol(left_type)
right := c.table.get_type_symbol(right_type)
// `array << elm`
// the expressions have different types (array_x and x)
if left.kind == .array && infix_expr.op == .left_shift {
return table.void_type
}
// `elm in array`
if right.kind == .array && infix_expr.op == .key_in {
return table.bool_type
}
// if !c.table.check(&infix_expr.right_type, &infix_expr.right_type) {
// c.error('infix expr: cannot use `$infix_expr.right_type.name` as `$infix_expr.left_type.name`', infix_expr.pos)
// ltyp := typeof(infix_expr.left)
c.error('infix expr: cannot use `$right.name` (right) as `$left.name`', infix_expr.pos)
}
if infix_expr.op.is_relational() {
return table.bool_type
}
return left_type
}
fn (c mut Checker) check_assign_expr(assign_expr ast.AssignExpr) {
left_type := c.expr(assign_expr.left)
c.expected_type = left_type
// t := c.table.get_type_symbol(left_type)
// println('setting exp type to $c.expected_type $t.name')
right_type := c.expr(assign_expr.val)
if !c.table.check(right_type, left_type) {
left_type_sym := c.table.get_type_symbol(left_type)
right_type_sym := c.table.get_type_symbol(right_type)
c.error('cannot assign $right_type_sym.name to $left_type_sym.name', assign_expr.pos)
}
}
pub fn (c mut Checker) call_expr(call_expr ast.CallExpr) table.Type {
fn_name := call_expr.name
mut found := false
// start hack: until v1 is fixed and c definitions are added for these
if fn_name == 'C.calloc' {
return table.byteptr_type
}
else if fn_name == 'C.exit' {
return table.void_type
}
else if fn_name == 'C.free' {
return table.void_type
}
// end hack
// look for function in format `mod.fn` or `fn` (main/builtin)
mut f := table.Fn{}
if f1 := c.table.find_fn(fn_name) {
found = true
f = f1
}
// try prefix with current module as it would have never gotten prefixed
if !found && !fn_name.contains('.') {
if f1 := c.table.find_fn('${c.file.mod.name}.$fn_name') {
found = true
f = f1
}
}
if !found {
c.error('unknown fn: $fn_name', call_expr.pos)
}
if f.is_c || call_expr.is_c {
return f.return_type
}
if call_expr.args.len < f.args.len {
c.error('too few arguments in call to `$fn_name`', call_expr.pos)
}
else if !f.is_variadic && call_expr.args.len > f.args.len {
c.error('too many arguments in call to `$fn_name` ($call_expr.args.len instead of $f.args.len)', call_expr.pos)
}
for i, arg_expr in call_expr.args {
arg := if f.is_variadic && i >= f.args.len - 1 { f.args[f.args.len - 1] } else { f.args[i] }
typ := c.expr(arg_expr)
typ_sym := c.table.get_type_symbol(typ)
arg_typ_sym := c.table.get_type_symbol(arg.typ)
if !c.table.check(typ, arg.typ) {
// str method, allow type with str method if fn arg is string
if arg_typ_sym.kind == .string && typ_sym.has_method('str') {
continue
}
// TODO const bug
if typ_sym.kind == .void && arg_typ_sym.kind == .string {
continue
}
c.error('!cannot use type `$typ_sym.name` as type `$arg_typ_sym.name` in argument ${i+1} to `$fn_name`', call_expr.pos)
}
}
return f.return_type
}
pub fn (c mut Checker) check_method_call_expr(method_call_expr ast.MethodCallExpr) table.Type {
typ := c.expr(method_call_expr.expr)
typ_sym := c.table.get_type_symbol(typ)
name := method_call_expr.name
if method := typ_sym.find_method(name) {
return method.return_type
}
if typ_sym.kind == .array && name in ['filter', 'clone'] {
// info := typ_sym.info as table.Array
return typ // info.elem_type
}
// check parent
if typ_sym.parent_idx != 0 {
parent := &c.table.types[typ_sym.parent_idx]
if method := parent.find_method(name) {
// println('got method $name, returning')
return method.return_type
}
}
c.error('type `$typ_sym.name` has no method `$name`', method_call_expr.pos)
return table.void_type
}
pub fn (c mut Checker) selector_expr(selector_expr ast.SelectorExpr) table.Type {
typ := c.expr(selector_expr.expr)
typ_sym := c.table.get_type_symbol(typ)
field_name := selector_expr.field
if field := typ_sym.find_field(field_name) {
return field.typ
}
// variadic
if table.type_is_variadic(typ) {
if field_name == 'len' {
return table.int_type
}
}
// check parent
if typ_sym.parent_idx != 0 {
parent := &c.table.types[typ_sym.parent_idx]
if field := parent.find_field(field_name) {
return field.typ
}
}
if typ_sym.kind != .struct_ {
if field_name == 'default_mode' {
// TODO
return table.bool_type
}
c.error('`$typ_sym.name` is not a struct', selector_expr.pos)
}
else {
c.error('unknown field `${typ_sym.name}.$field_name`', selector_expr.pos)
}
return table.void_type
}
// TODO: non deferred
pub fn (c mut Checker) return_stmt(return_stmt ast.Return) {
mut got_types := []table.Type
if return_stmt.exprs.len == 0 {
return
}
for expr in return_stmt.exprs {
typ := c.expr(expr)
got_types << typ
}
expected_type := return_stmt.expected_type
expected_type_sym := c.table.get_type_symbol(expected_type)
exp_is_optional := table.type_is_optional(expected_type)
mut expected_types := [expected_type]
if expected_type_sym.kind == .multi_return {
mr_info := expected_type_sym.info as table.MultiReturn
expected_types = mr_info.types
}
if expected_types.len > 0 && expected_types.len != got_types.len {
c.error('wrong number of return arguments:\n\texpected: $expected_types.str()\n\tgot: $got_types.str()', return_stmt.pos)
}
for i, exp_typ in expected_types {
got_typ := got_types[i]
if !c.table.check(got_typ, exp_typ) {
got_typ_sym := c.table.get_type_symbol(got_typ)
exp_typ_sym := c.table.get_type_symbol(exp_typ)
if got_typ_sym.name == 'Option' && exp_is_optional {
continue
}
c.error('cannot use `$got_typ_sym.name` as type `$exp_typ_sym.name` in return argument', return_stmt.pos)
}
}
}
pub fn (c mut Checker) assign_stmt(assign_stmt ast.AssignStmt) {
// multi return
if assign_stmt.left.len > assign_stmt.right.len {
right := c.expr(assign_stmt.right[0])
right_sym := c.table.get_type_symbol(right)
info := right_sym.mr_info()
if right_sym.kind != .multi_return {
c.error('wrong number of vars', assign_stmt.pos)
}
mut scope := c.file.scope.innermost(assign_stmt.pos.pos) or {
c.file.scope
}
for i, ident in assign_stmt.left {
// TODO: check types
scope.override_var(ast.VarDecl{
name: ident.name
typ: info.types[i]
})
}
}
// TODO: multiple assign
}
pub fn (c mut Checker) array_init(array_init mut ast.ArrayInit) table.Type {
mut elem_type := table.void_type
// a = []
if array_init.exprs.len == 0 {}
for i, expr in array_init.exprs {
c.expr(expr)
typ := c.expr(expr)
// The first element's type
if i == 0 {
elem_type = typ
c.expected_type = typ
continue
}
if !c.table.check(elem_type, typ) {
elem_type_sym := c.table.get_type_symbol(elem_type)
c.error('expected array element with type `$elem_type_sym.name`', array_init.pos)
}
}
// only inits if know types like []string set the type in parser
// as the rest could be result of expression, so do it here
if array_init.typ == 0 {
is_fixed := false
fixed_size := 1
idx := if is_fixed { c.table.find_or_register_array_fixed(elem_type, fixed_size, 1) } else { c.table.find_or_register_array(elem_type, 1) }
array_type := table.new_type(idx)
array_init.typ = array_type
}
return array_init.typ
}
fn (c mut Checker) stmt(node ast.Stmt) {
// c.expected_type = table.void_type
match mut node {
ast.FnDecl {
for stmt in it.stmts {
c.stmt(stmt)
}
}
ast.Return {
c.return_stmt(it)
}
ast.AssignStmt {
c.assign_stmt(it)
}
ast.ConstDecl {
for i, expr in it.exprs {
mut field := it.fields[i]
typ := c.expr(expr)
mut xconst := c.table.consts[field.name]
// if xconst.typ == 0 {
xconst.typ = typ
c.table.consts[field.name] = xconst
// }
field.typ = typ
it.fields[i] = field
}
}
ast.VarDecl {
typ := c.expr(it.expr)
// typ_sym := c.table.get_type_symbol(typ)
// println('var $it.name - $typ - $it.typ - $typ_sym.name')
// if it.typ == 0 {
// it.typ = typ
// }
it.typ = typ
}
ast.ForStmt {
typ := c.expr(it.cond)
// typ_sym := c.table.get_type_symbol(typ)
// if typ_sym.kind != .bool {
if !it.is_inf && table.type_idx(typ) != table.bool_type_idx {
c.error('non-bool used as for condition', it.pos)
}
for stmt in it.stmts {
c.stmt(stmt)
}
}
ast.ForCStmt {
c.stmt(it.init)
c.expr(it.cond)
c.stmt(it.inc)
for stmt in it.stmts {
c.stmt(stmt)
}
}
// ast.StructDecl {}
ast.ExprStmt {
c.expr(it.expr)
}
else {}
}
}
pub fn (c mut Checker) expr(node ast.Expr) table.Type {
match mut node {
ast.AssignExpr {
c.check_assign_expr(it)
}
ast.Assoc {
scope := c.file.scope.innermost(it.pos.pos) or {
c.file.scope
}
var := scope.find_var(it.var_name) or {
panic(err)
}
return var.typ
}
ast.EnumVal {
return c.enum_val(it)
}
ast.FloatLiteral {
return table.f64_type
}
ast.IntegerLiteral {
return table.int_type
}
ast.PostfixExpr {
return c.postfix_expr(it)
}
/*
ast.UnaryExpr {
c.expr(it.left)
}
*/
ast.SizeOf {
return table.int_type
}
ast.StringLiteral {
return table.string_type
}
ast.CharLiteral {
return table.byte_type
}
ast.PrefixExpr {
return c.expr(it.right)
}
ast.InfixExpr {
return c.infix_expr(it)
}
ast.StructInit {
return c.check_struct_init(it)
}
ast.CallExpr {
return c.call_expr(it)
}
ast.MethodCallExpr {
return c.check_method_call_expr(it)
}
ast.ArrayInit {
return c.array_init(mut it)
}
ast.Ident {
return c.ident(mut it)
}
ast.BoolLiteral {
return table.bool_type
}
ast.SelectorExpr {
return c.selector_expr(it)
}
ast.IndexExpr {
return c.index_expr(it)
}
ast.IfExpr {
return c.if_expr(mut it)
}
ast.MatchExpr {
return c.match_expr(mut it)
}
ast.CastExpr {
return it.typ
}
ast.ParExpr {
return c.expr(it.expr)
}
ast.None {
return table.none_type
}
else {}
}
return table.void_type
}
pub fn (c mut Checker) ident(ident mut ast.Ident) table.Type {
// println('IDENT: $it.name - $it.pos.pos')
if ident.kind == .variable {
// println('===========================')
// c.scope.print_vars(0)
// println('===========================')
info := ident.info as ast.IdentVar
if info.typ != 0 {
return info.typ
}
start_scope := c.file.scope.innermost(ident.pos.pos) or {
c.file.scope
}
mut found := true
mut var_scope := &ast.Scope(0)
mut var := ast.VarDecl{}
var_scope,var = start_scope.find_scope_and_var(ident.name) or {
found = false
c.error('not found: $ident.name - POS: $ident.pos.pos', ident.pos)
panic('')
}
if found {
// update the variable
// we need to do this here instead of var_decl since some
// vars are registered manually for things like for loops etc
// NOTE: or consider making those declerations part of those ast nodes
mut typ := var.typ
// set var type on first use
if typ == 0 {
typ = c.expr(var.expr)
var.typ = typ
var_scope.override_var(var)
}
// update ident
ident.kind = .variable
ident.info = ast.IdentVar{
typ: typ
}
return typ
}
}
// second use, already resovled in unresovled branch
else if ident.kind == .constant {
info := ident.info as ast.IdentVar
return info.typ
}
// second use, already resovled in unresovled branch
else if ident.kind == .function {
info := ident.info as ast.IdentFunc
return info.return_type
}
// Handle indents with unresolved types during the parsing step
// (declared after first usage)
else if ident.kind == .unresolved {
// prepend mod to look for fn call or const
mut name := ident.name
if !name.contains('.') && !(c.file.mod.name in ['builtin', 'main']) {
name = '${c.file.mod.name}.$ident.name'
}
// println('# name: $name')
// constant
if constant := c.table.find_const(name) {
ident.kind = .constant
ident.info = ast.IdentVar{
typ: constant.typ
}
return constant.typ
}
// Function object (not a call), e.g. `onclick(my_click)`
if func := c.table.find_fn(name) {
ident.kind = .function
ident.info = ast.IdentFunc{
return_type: func.return_type
}
return func.return_type
}
}
if ident.is_c {
return table.int_type
}
return table.void_type
}
pub fn (c mut Checker) match_expr(node mut ast.MatchExpr) table.Type {
t := c.expr(node.cond)
for i, block in node.blocks {
if i < node.match_exprs.len {
match_expr := node.match_exprs[i]
c.expr(match_expr)
}
for stmt in block.stmts {
c.stmt(stmt)
}
// If the last statement is an expression, return its type
if block.stmts.len > 0 {
match block.stmts[block.stmts.len - 1] {
ast.ExprStmt {}
// TODO: ask alex about this
// typ := c.expr(it.expr)
// type_sym := c.table.get_type_symbol(typ)
// p.warn('match expr ret $type_sym.name')
// node.typ = typ
// return typ
else {}
}
}
}
node.typ = t
return t
}
pub fn (c mut Checker) if_expr(node mut ast.IfExpr) table.Type {
typ := c.expr(node.cond)
node.typ = typ
typ_sym := c.table.get_type_symbol(typ)
// if typ_sym.kind != .bool {
if table.type_idx(typ) != table.bool_type_idx {
c.error('non-bool (`$typ_sym.name`) used as if condition', node.pos)
}
for i, stmt in node.stmts {
c.stmt(stmt)
}
if node.else_stmts.len > 0 {
for stmt in node.else_stmts {
c.stmt(stmt)
}
}
if node.stmts.len > 0 {
match node.stmts[node.stmts.len - 1] {
ast.ExprStmt {
// type_sym := p.table.get_type_symbol(it.typ)
// p.warn('if expr ret $type_sym.name')
// typ = it.typ
// return it.typ
t := c.expr(it.expr)
node.typ = t
return t
// return node,it.ti
// left =
}
else {}
}
}
return typ
// return table.void_type
}
pub fn (c mut Checker) postfix_expr(node ast.PostfixExpr) table.Type {
/*
match node.expr {
ast.IdentVar {
println('postfix identvar')
}
else {}
}
*/
typ := c.expr(node.expr)
typ_sym := c.table.get_type_symbol(typ)
// if !table.is_number(typ) {
if !typ_sym.is_number() {
println(typ_sym.kind.str())
c.error('invalid operation: $node.op.str() (non-numeric type `$typ_sym.name`)', node.pos)
}
return typ
}
pub fn (c mut Checker) index_expr(node ast.IndexExpr) table.Type {
/*
mut typ := left_type
left_type_sym := p.table.get_type_symbol(left_type)
if left_type_sym.kind == .array {
info := left_type_sym.info as table.Array
typ = info.elem_type
}
*/
typ := c.expr(node.left)
mut is_range := false // TODO is_range := node.index is ast.RangeExpr
match node.index {
ast.RangeExpr {
is_range = true
}
else {}
}
if !is_range {
index_type := c.expr(node.index)
if !(table.type_idx(index_type) in table.number_idxs) {
index_type_sym := c.table.get_type_symbol(index_type)
c.error('non-integer index (type `$index_type_sym.name`)', node.pos)
}
typ_sym := c.table.get_type_symbol(typ)
if typ_sym.kind == .array {
// Check index type
info := typ_sym.info as table.Array
return info.elem_type
}
else if typ_sym.kind == .array_fixed {
info := typ_sym.info as table.ArrayFixed
return info.elem_type
}
else if typ_sym.kind == .map {
info := typ_sym.info as table.Map
return info.value_type
}
else if typ_sym.kind in [.byteptr, .string] {
// TODO: hack need to handle &a[0] comment to see wyahsh errors
if typ_sym.kind == .byteptr {
return table.type_to_ptr(table.byte_type)
}
return table.byte_type
}
// else {
// return table.int_type
// }
}
return typ
}
// `.green` or `Color.green`
// If a short form is used, `expected_type` needs to be an enum
// with this value.
pub fn (c mut Checker) enum_val(node ast.EnumVal) table.Type {
// println('checker: enum: $node.enum_name')
typ_idx := if node.enum_name == '' { c.expected_type } else { //
c.table.find_type_idx(node.enum_name) }
typ := c.table.get_type_symbol(table.Type(typ_idx))
// info := typ.info as table.Enum
info := typ.enum_info()
// rintln('checker: x = $info.x enum val $c.expected_type $typ.name')
// println(info.vals)
if !(node.val in info.vals) {
c.error('enum `$typ.name` does not have a value `$node.val`', node.pos)
}
return typ_idx
}
pub fn (c mut Checker) error(s string, pos token.Position) {
c.nr_errors++
print_backtrace()
mut path := c.file.path
// Get relative path
workdir := os.getwd() + filepath.separator
if path.starts_with(workdir) {
path = path.replace(workdir, '')
}
final_msg_line := '$path:$pos.line_nr: checker error #$c.nr_errors: $s'
c.errors << final_msg_line
eprintln(final_msg_line)
/*
if colored_output {
eprintln(term.bold(term.red(final_msg_line)))
}else{
eprintln(final_msg_line)
}
*/
println('\n\n')
if c.nr_errors >= max_nr_errors {
exit(1)
}
}