v/vlib/bitfield/bitfield_test.v

323 lines
6.4 KiB
V

import bitfield
import rand
import time
fn test_bf_new_size() {
instance := bitfield.new(75)
assert instance.getsize() == 75
}
fn test_bf_set_clear_toggle_get() {
mut instance := bitfield.new(75)
instance.setbit(47)
assert instance.getbit(47) == 1
instance.clearbit(47)
assert instance.getbit(47) == 0
instance.togglebit(47)
assert instance.getbit(47) == 1
}
fn test_bf_and_not_or_xor() {
rand.seed(time.now().unix)
len := 80
mut input1 := bitfield.new(len)
mut input2 := bitfield.new(len)
mut i := 0
for i < len {
if rand.next(2) == 1 {
input1.setbit(i)
}
if rand.next(2) == 1{
input2.setbit(i)
}
i++
}
output1 := bitfield.bfxor(input1, input2)
bfand := bitfield.bfand(input1, input2)
bfor := bitfield.bfor(input1, input2)
bfnot := bitfield.bfnot(bfand)
output2 := bitfield.bfand(bfor, bfnot)
mut result := 1
for i < len {
if output1.getbit(i) != output2.getbit(i) {result = 0}
}
assert result == 1
}
fn test_clone_cmp() {
rand.seed(time.now().unix)
len := 80
mut input := bitfield.new(len)
for i := 0; i < len; i++ {
if rand.next(2) == 1 {
input.setbit(i)
}
}
output := bitfield.clone(input)
assert output.getsize() == len
assert bitfield.cmp(input, output) == true
}
fn test_slice_join() {
rand.seed(time.now().unix)
len := 80
mut input := bitfield.new(len)
for i := 0; i < len; i++ {
if rand.next(2) == 1 {
input.setbit(i)
}
}
mut result := 1
for point := 1; point < (len - 1); point++ {
// divide a bitfield into two subfields
chunk1 := input.slice(0, point)
chunk2 := input.slice(point, input.getsize())
// concatenate them back into one and compare to the original
output := bitfield.join(chunk1, chunk2)
if !bitfield.cmp(input, output) {
result = 0
}
}
assert result == 1
}
fn test_popcount() {
rand.seed(time.now().unix)
len := 80
mut count0 := 0
mut input := bitfield.new(len)
for i := 0; i < len; i++ {
if rand.next(2) == 1 {
input.setbit(i)
count0++
}
}
count1 := input.popcount()
assert count0 == count1
}
fn test_hamming() {
rand.seed(time.now().unix)
len := 80
mut count := 0
mut input1 := bitfield.new(len)
mut input2 := bitfield.new(len)
for i := 0; i < len; i++ {
match rand.next(4) {
0, 1 {
input1.setbit(i)
count++
}
2 {
input2.setbit(i)
count++
}
3 {
input1.setbit(i)
input2.setbit(i)
}
else {
}
}
}
assert count == bitfield.hamming(input1, input2)
}
fn test_bf_from_bytes() {
input := [byte(0xF0), byte(0x0F), byte(0xF0), byte(0xFF)]
output := bitfield.from_bytes(input)
mut result := 1
for i := 0; i < input.len * 8; i++ {
if (input[i / 8] >> (i % 8)) & 1 != output.getbit(i) {
result = 0
}
}
assert result == 1
}
fn test_bf_from_string() {
rand.seed(time.now().unix)
len := 80
mut input := ''
for i := 0; i < len; i++ {
if rand.next(2) == 1 {
input = input + '1'
}
else {
input = input + '0'
}
}
output := bitfield.from_string(input)
mut result := 1
for i := 0; i < len; i++ {
if input[i] != output.getbit(i) + 48 {
result = 0
}
}
assert result == 1
}
fn test_bf_bf2str() {
rand.seed(time.now().unix)
len := 80
mut input := bitfield.new(len)
for i := 0; i < len; i++ {
if rand.next(2) == 1 {
input.setbit(i)
}
}
mut check := ''
for i := 0; i < len; i++ {
if input.getbit(i) == 1 {
check = check + '1'
}
else {
check = check + '0'
}
}
output := input.string()
mut result := 1
for i := 0; i < len; i++ {
if check[i] != output[i] {
result = 0
}
}
assert result == 1
}
fn test_bf_setall() {
rand.seed(time.now().unix)
len := 80
mut input := bitfield.new(len)
input.setall()
mut result := 1
for i := 0; i < len; i++ {
if input.getbit(i) != 1 {
result = 0
}
}
assert result == 1
}
fn test_bf_clearall() {
rand.seed(time.now().unix)
len := 80
mut input := bitfield.new(len)
for i := 0; i < len; i++ {
if rand.next(2) == 1 {
input.setbit(i)
}
}
input.clearall()
mut result := 1
for i := 0; i < len; i++ {
if input.getbit(i) != 0 {
result = 0
}
}
assert result == 1
}
fn test_bf_reverse() {
rand.seed(time.now().unix)
len := 80
mut input := bitfield.new(len)
for i := 0; i < len; i++ {
if rand.next(2) == 1 {
input.setbit(i)
}
}
check := bitfield.clone(input)
output := input.reverse()
mut result := 1
for i := 0; i < len; i++ {
if output.getbit(i) != check.getbit(len - i - 1) {
result = 0
}
}
assert result == 1
}
fn test_bf_resize() {
rand.seed(time.now().unix)
len := 80
mut input := bitfield.new(rand.next(len) + 1)
for i := 0; i < 100; i++ {
input.resize(rand.next(len) + 1)
input.setbit(input.getsize() - 1)
}
assert input.getbit(input.getsize() - 1) == 1
}
fn test_bf_pos() {
/**
* set haystack size to 80
* test different sizes of needle, from 1 to 80
* test different positions of needle, from 0 to where it fits
* all haystacks here contain exactly one instanse of needle,
* so search should return non-negative-values
**/
rand.seed(time.now().unix)
len := 80
mut result := 1
for i := 1; i < len; i++ { // needle size
for j := 0; j < len - i; j++ { // needle position in the haystack
// create the needle
mut needle := bitfield.new(i)
// fill the needle with random values
for k := 0; k < i; k++ {
if rand.next(2) == 1 {
needle.setbit(k)
}
}
// make sure the needle contains at least one set bit, selected randomly
r := rand.next(i)
needle.setbit(r)
// create the haystack, make sure it contains the needle
mut haystack := bitfield.clone(needle)
// if there is space between the start of the haystack and the sought needle, fill it with zeroes
if j > 0 {
start := bitfield.new(j)
tmp := bitfield.join(start, haystack)
haystack = tmp
}
// if there is space between the sought needle and the end of haystack, fill it with zeroes
if j + i < len {
end := bitfield.new(len - j - i)
tmp2 := bitfield.join(haystack, end)
haystack = tmp2
}
// now let's test
// the result should be equal to j
if haystack.pos(needle) != j {
result = 0
}
}
}
assert result == 1
}
fn test_bf_rotate() {
mut result := 1
len := 80
for i := 1; i < 80 && result == 1; i++ {
mut chunk1 := bitfield.new(i)
chunk2 := bitfield.new(len - i)
chunk1.setall()
input := bitfield.join(chunk1, chunk2)
output := input.rotate(i)
if output.getbit(len - i - 1) != 0 || output.getbit(len - i) != 1 {
result = 0
}
}
assert result == 1
}