215 lines
5.2 KiB
V
215 lines
5.2 KiB
V
module math
|
||
|
||
import math.internal
|
||
|
||
const (
|
||
f64_max_exp = f64(1024)
|
||
f64_min_exp = f64(-1021)
|
||
threshold = 7.09782712893383973096e+02 // 0x40862E42FEFA39EF
|
||
ln2_x56 = 3.88162421113569373274e+01 // 0x4043687a9f1af2b1
|
||
ln2_halfx3 = 1.03972077083991796413e+00 // 0x3ff0a2b23f3bab73
|
||
ln2_half = 3.46573590279972654709e-01 // 0x3fd62e42fefa39ef
|
||
ln2hi = 6.93147180369123816490e-01 // 0x3fe62e42fee00000
|
||
ln2lo = 1.90821492927058770002e-10 // 0x3dea39ef35793c76
|
||
inv_ln2 = 1.44269504088896338700e+00 // 0x3ff71547652b82fe
|
||
// scaled coefficients related to expm1
|
||
expm1_q1 = -3.33333333333331316428e-02 // 0xBFA11111111110F4
|
||
expm1_q2 = 1.58730158725481460165e-03 // 0x3F5A01A019FE5585
|
||
expm1_q3 = -7.93650757867487942473e-05 // 0xBF14CE199EAADBB7
|
||
expm1_q4 = 4.00821782732936239552e-06 // 0x3ED0CFCA86E65239
|
||
expm1_q5 = -2.01099218183624371326e-07 // 0xBE8AFDB76E09C32D
|
||
)
|
||
|
||
// exp returns e**x, the base-e exponential of x.
|
||
//
|
||
// special cases are:
|
||
// exp(+inf) = +inf
|
||
// exp(nan) = nan
|
||
// Very large values overflow to 0 or +inf.
|
||
// Very small values underflow to 1.
|
||
pub fn exp(x f64) f64 {
|
||
log2e := 1.44269504088896338700e+00
|
||
overflow := 7.09782712893383973096e+02
|
||
underflow := -7.45133219101941108420e+02
|
||
near_zero := 1.0 / (1 << 28) // 2**-28
|
||
// special cases
|
||
if is_nan(x) || is_inf(x, 1) {
|
||
return x
|
||
}
|
||
if is_inf(x, -1) {
|
||
return 0.0
|
||
}
|
||
if x > overflow {
|
||
return inf(1)
|
||
}
|
||
if x < underflow {
|
||
return 0.0
|
||
}
|
||
if -near_zero < x && x < near_zero {
|
||
return 1.0 + x
|
||
}
|
||
// reduce; computed as r = hi - lo for extra precision.
|
||
mut k := 0
|
||
if x < 0 {
|
||
k = int(log2e * x - 0.5)
|
||
}
|
||
if x > 0 {
|
||
k = int(log2e * x + 0.5)
|
||
}
|
||
hi := x - f64(k) * math.ln2hi
|
||
lo := f64(k) * math.ln2lo
|
||
// compute
|
||
return expmulti(hi, lo, k)
|
||
}
|
||
|
||
// exp2 returns 2**x, the base-2 exponential of x.
|
||
//
|
||
// special cases are the same as exp.
|
||
pub fn exp2(x f64) f64 {
|
||
overflow := 1.0239999999999999e+03
|
||
underflow := -1.0740e+03
|
||
if is_nan(x) || is_inf(x, 1) {
|
||
return x
|
||
}
|
||
if is_inf(x, -1) {
|
||
return 0
|
||
}
|
||
if x > overflow {
|
||
return inf(1)
|
||
}
|
||
if x < underflow {
|
||
return 0
|
||
}
|
||
// argument reduction; x = r×lg(e) + k with |r| ≤ ln(2)/2.
|
||
// computed as r = hi - lo for extra precision.
|
||
mut k := 0
|
||
if x > 0 {
|
||
k = int(x + 0.5)
|
||
}
|
||
if x < 0 {
|
||
k = int(x - 0.5)
|
||
}
|
||
mut t := x - f64(k)
|
||
hi := t * math.ln2hi
|
||
lo := -t * math.ln2lo
|
||
// compute
|
||
return expmulti(hi, lo, k)
|
||
}
|
||
|
||
pub fn ldexp(x f64, e int) f64 {
|
||
if x == 0.0 {
|
||
return x
|
||
} else {
|
||
mut y, ex := frexp(x)
|
||
mut e2 := f64(e + ex)
|
||
if e2 >= math.f64_max_exp {
|
||
y *= pow(2.0, e2 - math.f64_max_exp + 1.0)
|
||
e2 = math.f64_max_exp - 1.0
|
||
} else if e2 <= math.f64_min_exp {
|
||
y *= pow(2.0, e2 - math.f64_min_exp - 1.0)
|
||
e2 = math.f64_min_exp + 1.0
|
||
}
|
||
return y * pow(2.0, e2)
|
||
}
|
||
}
|
||
|
||
// frexp breaks f into a normalized fraction
|
||
// and an integral power of two.
|
||
// It returns frac and exp satisfying f == frac × 2**exp,
|
||
// with the absolute value of frac in the interval [½, 1).
|
||
//
|
||
// special cases are:
|
||
// frexp(±0) = ±0, 0
|
||
// frexp(±inf) = ±inf, 0
|
||
// frexp(nan) = nan, 0
|
||
// pub fn frexp(f f64) (f64, int) {
|
||
// // special cases
|
||
// if f == 0.0 {
|
||
// return f, 0 // correctly return -0
|
||
// }
|
||
// if is_inf(f, 0) || is_nan(f) {
|
||
// return f, 0
|
||
// }
|
||
// f_norm, mut exp := normalize(f)
|
||
// mut x := f64_bits(f_norm)
|
||
// exp += int((x>>shift)&mask) - bias + 1
|
||
// x &= ~(mask << shift)
|
||
// x |= (-1 + bias) << shift
|
||
// return f64_from_bits(x), exp
|
||
pub fn frexp(x f64) (f64, int) {
|
||
if x == 0.0 {
|
||
return 0.0, 0
|
||
} else if !is_finite(x) {
|
||
return x, 0
|
||
} else if abs(x) >= 0.5 && abs(x) < 1 { // Handle the common case
|
||
return x, 0
|
||
} else {
|
||
ex := ceil(log(abs(x)) / ln2)
|
||
mut ei := int(ex) // Prevent underflow and overflow of 2**(-ei)
|
||
if ei < int(math.f64_min_exp) {
|
||
ei = int(math.f64_min_exp)
|
||
}
|
||
if ei > -int(math.f64_min_exp) {
|
||
ei = -int(math.f64_min_exp)
|
||
}
|
||
mut f := x * pow(2.0, -ei)
|
||
if !is_finite(f) { // This should not happen
|
||
return f, 0
|
||
}
|
||
for abs(f) >= 1.0 {
|
||
ei++
|
||
f /= 2.0
|
||
}
|
||
for abs(f) > 0 && abs(f) < 0.5 {
|
||
ei--
|
||
f *= 2.0
|
||
}
|
||
return f, ei
|
||
}
|
||
}
|
||
|
||
// special cases are:
|
||
// expm1(+inf) = +inf
|
||
// expm1(-inf) = -1
|
||
// expm1(nan) = nan
|
||
pub fn expm1(x f64) f64 {
|
||
if is_inf(x, 1) || is_nan(x) {
|
||
return x
|
||
}
|
||
if is_inf(x, -1) {
|
||
return f64(-1)
|
||
}
|
||
// FIXME: this should be improved
|
||
if abs(x) < ln2 { // Compute the taylor series S = x + (1/2!) x^2 + (1/3!) x^3 + ...
|
||
mut i := 1.0
|
||
mut sum := x
|
||
mut term := x / 1.0
|
||
i++
|
||
term *= x / f64(i)
|
||
sum += term
|
||
for abs(term) > abs(sum) * internal.f64_epsilon {
|
||
i++
|
||
term *= x / f64(i)
|
||
sum += term
|
||
}
|
||
return sum
|
||
} else {
|
||
return exp(x) - 1
|
||
}
|
||
}
|
||
|
||
// exp1 returns e**r × 2**k where r = hi - lo and |r| ≤ ln(2)/2.
|
||
fn expmulti(hi f64, lo f64, k int) f64 {
|
||
exp_p1 := 1.66666666666666657415e-01 // 0x3FC55555; 0x55555555
|
||
exp_p2 := -2.77777777770155933842e-03 // 0xBF66C16C; 0x16BEBD93
|
||
exp_p3 := 6.61375632143793436117e-05 // 0x3F11566A; 0xAF25DE2C
|
||
exp_p4 := -1.65339022054652515390e-06 // 0xBEBBBD41; 0xC5D26BF1
|
||
exp_p5 := 4.13813679705723846039e-08 // 0x3E663769; 0x72BEA4D0
|
||
r := hi - lo
|
||
t := r * r
|
||
c := r - t * (exp_p1 + t * (exp_p2 + t * (exp_p3 + t * (exp_p4 + t * exp_p5))))
|
||
y := 1 - ((lo - (r * c) / (2 - c)) - hi)
|
||
// TODO(rsc): make sure ldexp can handle boundary k
|
||
return ldexp(y, k)
|
||
}
|