457 lines
9.1 KiB
V
457 lines
9.1 KiB
V
// Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
|
|
// Use of this source code is governed by an MIT license
|
|
// that can be found in the LICENSE file.
|
|
|
|
module time
|
|
|
|
import rand
|
|
|
|
const (
|
|
month_days = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
|
|
)
|
|
|
|
#include <time.h>
|
|
|
|
struct Time {
|
|
pub:
|
|
year int
|
|
month int
|
|
day int
|
|
hour int
|
|
minute int
|
|
second int
|
|
uni int // TODO it's safe to use "unix" now
|
|
}
|
|
|
|
|
|
fn C.localtime(int) &C.tm
|
|
|
|
fn remove_me_when_c_bug_is_fixed() { // TODO
|
|
}
|
|
|
|
struct C.time_t {}
|
|
|
|
struct C.tm {
|
|
tm_year int
|
|
tm_mon int
|
|
tm_mday int
|
|
tm_hour int
|
|
tm_min int
|
|
tm_sec int
|
|
}
|
|
|
|
fn C.time(int) C.time_t
|
|
|
|
pub fn now() Time {
|
|
t := C.time(0)
|
|
mut now := &C.tm{!}
|
|
now = C.localtime(&t)
|
|
return convert_ctime(now)
|
|
}
|
|
|
|
pub fn random() Time {
|
|
now_unix := now().uni
|
|
rand_unix := rand.next(now_unix)
|
|
|
|
return time.unix(rand_unix)
|
|
}
|
|
|
|
const (
|
|
// The unsigned zero year for internal calculations.
|
|
// Must be 1 mod 400, and times before it will not compute correctly,
|
|
// but otherwise can be changed at will.
|
|
absolute_zero_year = i64(-292277022399)
|
|
|
|
seconds_per_minute = 60
|
|
seconds_per_hour = 60 * seconds_per_minute
|
|
seconds_per_day = 24 * seconds_per_hour
|
|
seconds_per_week = 7 * seconds_per_day
|
|
days_per_400_years = 365*400 + 97
|
|
days_per_100_years = 365*100 + 24
|
|
days_per_4_years = 365*4 + 1
|
|
|
|
days_before = [
|
|
0,
|
|
31,
|
|
31 + 28,
|
|
31 + 28 + 31,
|
|
31 + 28 + 31 + 30,
|
|
31 + 28 + 31 + 30 + 31,
|
|
31 + 28 + 31 + 30 + 31 + 30,
|
|
31 + 28 + 31 + 30 + 31 + 30 + 31,
|
|
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
|
|
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
|
|
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
|
|
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
|
|
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31,
|
|
]
|
|
|
|
)
|
|
|
|
const (
|
|
months_string = 'JanFebMarAprMayJunJulAugSepOctNovDec'
|
|
days_string = 'MonTueWedThuFriSatSun'
|
|
)
|
|
|
|
|
|
// Based on Go's time package.
|
|
// Copyright 2009 The Go Authors.
|
|
pub fn unix(abs int) Time {
|
|
// Split into time and day.
|
|
mut d := abs / seconds_per_day
|
|
|
|
// Account for 400 year cycles.
|
|
mut n := d / days_per_400_years
|
|
mut y := 400 * n
|
|
d -= days_per_400_years * n
|
|
|
|
// Cut off 100-year cycles.
|
|
// The last cycle has one extra leap year, so on the last day
|
|
// of that year, day / days_per_100_years will be 4 instead of 3.
|
|
// Cut it back down to 3 by subtracting n>>2.
|
|
n = d / days_per_100_years
|
|
n -= n >> 2
|
|
y += 100 * n
|
|
d -= days_per_100_years * n
|
|
|
|
// Cut off 4-year cycles.
|
|
// The last cycle has a missing leap year, which does not
|
|
// affect the computation.
|
|
n = d / days_per_4_years
|
|
y += 4 * n
|
|
d -= days_per_4_years * n
|
|
|
|
// Cut off years within a 4-year cycle.
|
|
// The last year is a leap year, so on the last day of that year,
|
|
// day / 365 will be 4 instead of 3. Cut it back down to 3
|
|
// by subtracting n>>2.
|
|
n = d / 365
|
|
n -= n >> 2
|
|
y += n
|
|
d -= 365 * n
|
|
|
|
yday := int(d)
|
|
mut day := yday
|
|
|
|
year := abs / int(3.154e+7) + 1970 //int(i64(y) + absolute_zero_year)
|
|
hour := int(abs%seconds_per_day) / seconds_per_hour
|
|
minute := int(abs % seconds_per_hour) / seconds_per_minute
|
|
second := int(abs % seconds_per_minute)
|
|
|
|
if is_leap_year(year) {
|
|
// Leap year
|
|
if day > 31+29-1 {
|
|
// After leap day; pretend it wasn't there.
|
|
day--
|
|
} else if day == 31+29-1 {
|
|
// Leap day.
|
|
day = 29
|
|
return Time{year:year, month:2, day:day, hour:hour, minute: minute, second: second}
|
|
}
|
|
}
|
|
|
|
// Estimate month on assumption that every month has 31 days.
|
|
// The estimate may be too low by at most one month, so adjust.
|
|
mut month := day / 31
|
|
mut begin := 0
|
|
end := int(days_before[month+1])
|
|
if day >= end {
|
|
month++
|
|
begin = end
|
|
} else {
|
|
begin = int(days_before[month])
|
|
}
|
|
|
|
month++ // because January is 1
|
|
day = day - begin + 1
|
|
return Time{year:year, month: month, day:day, hour:hour, minute: minute, second: second}
|
|
}
|
|
|
|
pub fn convert_ctime(t tm) Time {
|
|
return Time {
|
|
year: t.tm_year + 1900
|
|
month: t.tm_mon + 1
|
|
day: t.tm_mday
|
|
hour: t.tm_hour
|
|
minute: t.tm_min
|
|
second: t.tm_sec
|
|
uni: C.mktime(&t)
|
|
}
|
|
}
|
|
|
|
pub fn (t Time) format_ss() string {
|
|
return '${t.year}-${t.month:02d}-${t.day:02d} ${t.hour:02d}:${t.minute:02d}:${t.second:02d}'
|
|
}
|
|
|
|
pub fn (t Time) format() string {
|
|
return '${t.year}-${t.month:02d}-${t.day:02d} ${t.hour:02d}:${t.minute:02d}'
|
|
}
|
|
|
|
|
|
pub fn (t Time) smonth() string {
|
|
i := t.month - 1
|
|
return months_string.substr(i * 3, (i + 1) * 3)
|
|
}
|
|
|
|
// 21:04
|
|
pub fn (t Time) hhmm() string {
|
|
return '${t.hour:02d}:${t.minute:02d}'
|
|
}
|
|
|
|
/*
|
|
fn (t Time) hhmm_tmp() string {
|
|
return '${t.hour:02d}:${t.minute:02d}'
|
|
}
|
|
*/
|
|
|
|
// 9:04pm
|
|
pub fn (t Time) hhmm12() string {
|
|
mut am := 'am'
|
|
mut hour := t.hour
|
|
if t.hour > 11 {
|
|
am = 'pm'
|
|
}
|
|
if t.hour > 12 {
|
|
hour = hour - 12
|
|
}
|
|
if t.hour == 0 {
|
|
hour = 12
|
|
}
|
|
return '$hour:${t.minute:02d} $am'
|
|
}
|
|
|
|
// 21:04:03
|
|
pub fn (t Time) hhmmss() string {
|
|
return '${t.hour:02d}:${t.minute:02d}:${t.second:02d}'
|
|
}
|
|
|
|
// 2012-01-05
|
|
pub fn (t Time) ymmdd() string {
|
|
return '${t.year}-${t.month:02d}-${t.day:02d}'
|
|
}
|
|
|
|
// 05.02.2012
|
|
pub fn (t Time) ddmmy() string {
|
|
return '${t.day:02d}.${t.month:02d}.${t.year}'
|
|
}
|
|
|
|
// Jul 3
|
|
pub fn (t Time) md() string {
|
|
// jl := t.smonth()
|
|
s := '${t.smonth()} $t.day'
|
|
return s
|
|
}
|
|
|
|
pub fn (t Time) clean() string {
|
|
nowe := time.now()
|
|
// if amtime {
|
|
// hm = t.Format("3:04 pm")
|
|
// }
|
|
// Today
|
|
if t.month == nowe.month && t.year == nowe.year && t.day == nowe.day {
|
|
return t.hhmm()
|
|
}
|
|
// This week
|
|
// if time.Since(t) < 24*7*time.Hour {
|
|
// return t.Weekday().String()[:3] + " " + hm
|
|
// }
|
|
// This year
|
|
if t.year == nowe.year {
|
|
return '${t.smonth()} ${t.day} ${t.hhmm()}'
|
|
}
|
|
return t.format()
|
|
// return fmt.Sprintf("%4d/%02d/%02d", t.Year(), t.Month(), t.Day()) + " " + hm
|
|
}
|
|
|
|
pub fn (t Time) clean12() string {
|
|
nowe := time.now()
|
|
// if amtime {
|
|
// hm = t.Format("3:04 pm")
|
|
// }
|
|
// Today
|
|
if t.month == nowe.month && t.year == nowe.year && t.day == nowe.day {
|
|
return t.hhmm12()
|
|
}
|
|
// This week
|
|
// if time.Since(t) < 24*7*time.Hour {
|
|
// return t.Weekday().String()[:3] + " " + hm
|
|
// }
|
|
// This year
|
|
if t.year == nowe.year {
|
|
return '${t.smonth()} ${t.day} ${t.hhmm12()}'
|
|
}
|
|
return t.format()
|
|
// return fmt.Sprintf("%4d/%02d/%02d", t.Year(), t.Month(), t.Day()) + " " + hm
|
|
}
|
|
|
|
// `parse` parses time in the following format: "2018-01-27 12:48:34"
|
|
pub fn parse(s string) Time {
|
|
// println('parse="$s"')
|
|
pos := s.index(' ')
|
|
if pos <= 0 {
|
|
println('bad time format')
|
|
return now()
|
|
}
|
|
symd := s.left(pos)
|
|
ymd := symd.split('-')
|
|
if ymd.len != 3 {
|
|
println('bad time format')
|
|
return now()
|
|
}
|
|
shms := s.right(pos)
|
|
hms := shms.split(':')
|
|
hour := hms[0]
|
|
minute := hms[1]
|
|
second := hms[2]
|
|
// //////////
|
|
return new_time(Time {
|
|
year: ymd[0].int()
|
|
month: ymd[1].int()
|
|
day: ymd[2].int()
|
|
hour: hour.int()
|
|
minute: minute.int()
|
|
second: second.int()
|
|
})
|
|
}
|
|
|
|
pub fn new_time(t Time) Time {
|
|
return{t | uni: t.calc_unix()}
|
|
}
|
|
|
|
pub fn (t &Time) calc_unix() int {
|
|
if t.uni != 0 {
|
|
return t.uni
|
|
}
|
|
tt := C.tm{
|
|
tm_sec : t.second
|
|
tm_min : t.minute
|
|
tm_hour : t.hour
|
|
tm_mday : t.day
|
|
tm_mon : t.month-1
|
|
tm_year : t.year - 1900
|
|
}
|
|
return C.mktime(&tt)
|
|
}
|
|
|
|
// TODO add(d time.Duration)
|
|
pub fn (t Time) add_seconds(seconds int) Time {
|
|
return unix(t.uni + seconds)
|
|
}
|
|
|
|
// TODO use time.Duration instead of seconds
|
|
fn since(t Time) int {
|
|
return 0
|
|
}
|
|
|
|
pub fn (t Time) relative() string {
|
|
now := time.now()
|
|
secs := now.uni - t.uni
|
|
if secs <= 30 {
|
|
// right now or in the future
|
|
// TODO handle time in the future
|
|
return 'now'
|
|
}
|
|
if secs < 60 {
|
|
return '1m'
|
|
}
|
|
if secs < 3600 {
|
|
return '${secs/60}m'
|
|
}
|
|
if secs < 3600 * 24 {
|
|
return '${secs/3600}h'
|
|
}
|
|
if secs < 3600 * 24 * 5 {
|
|
return '${secs/3600/24}d'
|
|
}
|
|
if secs > 3600 * 24 * 10000 {
|
|
return ''
|
|
}
|
|
return t.md()
|
|
}
|
|
|
|
pub fn day_of_week(y, m, d int) int {
|
|
// Sakomotho's algorithm is explained here:
|
|
// https://stackoverflow.com/a/6385934
|
|
t := [0, 3, 2, 5, 0, 3, 5, 1, 4, 6, 2, 4]
|
|
mut sy := y
|
|
if (m < 3) {
|
|
sy = sy - 1
|
|
}
|
|
return ( sy + sy/4 - sy/100 + sy/400 + t[m-1] + d - 1) % 7 + 1
|
|
}
|
|
|
|
pub fn (t Time) day_of_week() int {
|
|
return day_of_week(t.year, t.month, t.day)
|
|
}
|
|
|
|
// weekday_str() returns the current day in string (upto 3 characters)
|
|
pub fn (t Time) weekday_str() string {
|
|
i := t.day_of_week() - 1
|
|
return days_string.substr(i * 3, (i + 1) * 3)
|
|
}
|
|
|
|
struct C.timeval {
|
|
tv_sec int
|
|
tv_usec int
|
|
}
|
|
|
|
// in ms
|
|
pub fn ticks() i64 {
|
|
$if windows {
|
|
return C.GetTickCount()
|
|
}
|
|
$else {
|
|
ts := C.timeval{}
|
|
C.gettimeofday(&ts,0)
|
|
return ts.tv_sec * 1000 + (ts.tv_usec / 1000)
|
|
}
|
|
|
|
/*
|
|
t := i64(C.mach_absolute_time())
|
|
# Nanoseconds elapsedNano = AbsoluteToNanoseconds( *(AbsoluteTime *) &t );
|
|
# return (double)(* (uint64_t *) &elapsedNano) / 1000000;
|
|
*/
|
|
}
|
|
|
|
pub fn sleep(seconds int) {
|
|
$if windows {
|
|
C._sleep(seconds * 1000)
|
|
}
|
|
$else {
|
|
C.sleep(seconds)
|
|
}
|
|
}
|
|
|
|
pub fn usleep(n int) {
|
|
$if windows {
|
|
//C._usleep(n)
|
|
}
|
|
$else {
|
|
C.usleep(n)
|
|
}
|
|
}
|
|
|
|
pub fn sleep_ms(n int) {
|
|
$if windows {
|
|
C.Sleep(n)
|
|
}
|
|
$else {
|
|
C.usleep(n * 1000)
|
|
}
|
|
}
|
|
|
|
// Determine whether a year is a leap year.
|
|
pub fn is_leap_year(year int) bool {
|
|
return (year%4 == 0) && (year%100 != 0 || year%400 == 0)
|
|
}
|
|
|
|
// Returns number of days in month
|
|
pub fn days_in_month(month, year int) ?int {
|
|
if month > 12 || month < 1 {
|
|
return error('Invalid month: $month')
|
|
}
|
|
extra := if month == 2 && is_leap_year(year) {1} else {0}
|
|
res := month_days[month-1] + extra
|
|
return res
|
|
}
|