v/vlib/datatypes/bstree.v

297 lines
8.0 KiB
V

module datatypes
/// Internal rapresentation of the tree node
[heap]
struct BSTreeNode<T> {
mut:
// Mark a node as initialized
is_init bool
// Value of the node
value T
// The parent of the node
parent &BSTreeNode<T> = 0
// The left side with value less than the
// value of this node
left &BSTreeNode<T> = 0
// The right side with value grater than the
// value of thiss node
right &BSTreeNode<T> = 0
}
// Create new root bst node
fn new_root_node<T>(value T) &BSTreeNode<T> {
return &BSTreeNode<T>{
is_init: true
value: value
parent: new_none_node<T>(true)
left: new_none_node<T>(false)
right: new_none_node<T>(false)
}
}
// new_node creates a new bst node with a parent reference.
fn new_node<T>(parent &BSTreeNode<T>, value T) &BSTreeNode<T> {
return &BSTreeNode<T>{
is_init: true
value: value
parent: parent
}
}
// new_none_node creates a dummy node.
fn new_none_node<T>(init bool) &BSTreeNode<T> {
return &BSTreeNode<T>{
is_init: false
}
}
// bind to an actual instance of a node.
fn (mut node BSTreeNode<T>) bind(mut to_bind BSTreeNode<T>, left bool) {
node.left = to_bind.left
node.right = to_bind.right
node.value = to_bind.value
node.is_init = to_bind.is_init
to_bind = new_none_node<T>(false)
}
// Pure Binary Seach Tree implementation
//
// Pure V implementation of the Binary Search Tree
// Time complexity of main operation O(log N)
// Space complexity O(N)
pub struct BSTree<T> {
mut:
root &BSTreeNode<T> = 0
}
// insert give the possibility to insert an element in the BST.
pub fn (mut bst BSTree<T>) insert(value T) bool {
if bst.is_empty() {
bst.root = new_root_node(value)
return true
}
return bst.insert_helper(mut bst.root, value)
}
// insert_helper walks the tree and inserts the given node.
fn (mut bst BSTree<T>) insert_helper(mut node BSTreeNode<T>, value T) bool {
if node.value < value {
if node.right != 0 && node.right.is_init {
return bst.insert_helper(mut node.right, value)
}
node.right = new_node(node, value)
return true
} else if node.value > value {
if node.left != 0 && node.left.is_init {
return bst.insert_helper(mut node.left, value)
}
node.left = new_node(node, value)
return true
}
return false
}
// contains checks if an element with a given `value` is inside the BST.
pub fn (bst &BSTree<T>) contains(value T) bool {
return bst.contains_helper(bst.root, value)
}
// contains_helper is a helper function to walk the tree, and return
// the absence or presence of the `value`.
fn (bst &BSTree<T>) contains_helper(node &BSTreeNode<T>, value T) bool {
if node == 0 || !node.is_init {
return false
}
if node.value < value {
return bst.contains_helper(node.right, value)
} else if node.value > value {
return bst.contains_helper(node.left, value)
}
assert node.value == value
return true
}
// remove removes an element with `value` from the BST.
pub fn (mut bst BSTree<T>) remove(value T) bool {
if bst.root == 0 {
return false
}
return bst.remove_helper(mut bst.root, value, false)
}
fn (mut bst BSTree<T>) remove_helper(mut node BSTreeNode<T>, value T, left bool) bool {
if !node.is_init {
return false
}
if node.value == value {
if node.left != 0 && node.left.is_init {
// In order to remove the element we need to bring up as parent the max of the
// left sub-tree.
mut max_node := bst.get_max_from_right(node.left)
node.bind(mut max_node, true)
} else if node.right != 0 && node.right.is_init {
// Bring up the element with the minimum value in the right sub-tree.
mut min_node := bst.get_min_from_left(node.right)
node.bind(mut min_node, false)
} else {
mut parent := node.parent
if left {
parent.left = new_none_node<T>(false)
} else {
parent.right = new_none_node<T>(false)
}
node = new_none_node<T>(false)
}
return true
}
if node.value < value {
return bst.remove_helper(mut node.right, value, false)
}
return bst.remove_helper(mut node.left, value, true)
}
// get_max_from_right returns the max element of the BST following the right branch.
fn (bst &BSTree<T>) get_max_from_right(node &BSTreeNode<T>) &BSTreeNode<T> {
right_node := node.right
if right_node == 0 || !right_node.is_init {
return node
}
return bst.get_max_from_right(right_node)
}
// get_min_from_left returns the min element of the BST by following the left branch.
fn (bst &BSTree<T>) get_min_from_left(node &BSTreeNode<T>) &BSTreeNode<T> {
left_node := node.left
if left_node == 0 || !left_node.is_init {
return node
}
return bst.get_min_from_left(left_node)
}
// is_empty checks if the BST is empty
pub fn (bst &BSTree<T>) is_empty() bool {
return bst.root == 0
}
// in_order_traversal traverses the BST in order, and returns the result as an array.
pub fn (bst &BSTree<T>) in_order_traversal() []T {
mut result := []T{}
bst.in_order_traversal_helper(bst.root, mut result)
return result
}
// in_order_traversal_helper helps traverse the BST, and accumulates the result in the `result` array.
fn (bst &BSTree<T>) in_order_traversal_helper(node &BSTreeNode<T>, mut result []T) {
if node == 0 || !node.is_init {
return
}
bst.in_order_traversal_helper(node.left, mut result)
result << node.value
bst.in_order_traversal_helper(node.right, mut result)
}
// post_order_traversal traverses the BST in post order, and returns the result in an array.
pub fn (bst &BSTree<T>) post_order_traversal() []T {
mut result := []T{}
bst.post_order_traversal_helper(bst.root, mut result)
return result
}
// post_order_traversal_helper is a helper function that traverses the BST in post order,
// accumulating the result in an array.
fn (bst &BSTree<T>) post_order_traversal_helper(node &BSTreeNode<T>, mut result []T) {
if node == 0 || !node.is_init {
return
}
bst.post_order_traversal_helper(node.left, mut result)
bst.post_order_traversal_helper(node.right, mut result)
result << node.value
}
// pre_order_traversal traverses the BST in pre order, and returns the result as an array.
pub fn (bst &BSTree<T>) pre_order_traversal() []T {
mut result := []T{}
bst.pre_order_traversal_helper(bst.root, mut result)
return result
}
// pre_order_traversal_helper is a helper function to traverse the BST
// in pre order and accumulates the results in an array.
fn (bst &BSTree<T>) pre_order_traversal_helper(node &BSTreeNode<T>, mut result []T) {
if node == 0 || !node.is_init {
return
}
result << node.value
bst.pre_order_traversal_helper(node.left, mut result)
bst.pre_order_traversal_helper(node.right, mut result)
}
// get_node is a helper method to ge the internal rapresentation of the node with the `value`.
fn (bst &BSTree<T>) get_node(node &BSTreeNode<T>, value T) &BSTreeNode<T> {
if node == 0 || !node.is_init {
return new_none_node<T>(false)
}
if node.value == value {
return node
}
if node.value < value {
return bst.get_node(node.right, value)
}
return bst.get_node(node.left, value)
}
// to_left returns the value of the node to the left of the node with `value` specified if it exists,
// otherwise the a false value is returned.
//
// An example of usage can be the following one
//```v
// left_value, exist := bst.to_left(10)
//```
pub fn (bst &BSTree<T>) to_left(value T) ?T {
node := bst.get_node(bst.root, value)
if !node.is_init {
return none
}
left_node := node.left
return left_node.value
}
// to_right return the value of the element to the right of the node with `value` specified, if exist
// otherwise, the boolean value is false
// An example of usage can be the following one
//
//```v
// left_value, exist := bst.to_right(10)
//```
pub fn (bst &BSTree<T>) to_right(value T) ?T {
node := bst.get_node(bst.root, value)
if !node.is_init {
return none
}
right_node := node.right
return right_node.value
}
// max return the max element inside the BST.
// Time complexity O(N) if the BST is not balanced
pub fn (bst &BSTree<T>) max() ?T {
max := bst.get_max_from_right(bst.root)
if !max.is_init {
return none
}
return max.value
}
// min return the minimum element in the BST.
// Time complexity O(N) if the BST is not balanced.
pub fn (bst &BSTree<T>) min() ?T {
min := bst.get_min_from_left(bst.root)
if !min.is_init {
return none
}
return min.value
}