v/vlib/v/gen/fn.v

741 lines
22 KiB
V

// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module gen
import v.ast
import v.table
import v.util
fn (mut g Gen) gen_fn_decl(it ast.FnDecl) {
if it.language == .c {
// || it.no_body {
return
}
// if g.fileis('vweb.v') {
// println('\ngen_fn_decl() $it.name $it.is_generic $g.cur_generic_type')
// }
if it.is_generic && g.cur_generic_type == 0 { // need the cur_generic_type check to avoid inf. recursion
// loop thru each generic type and generate a function
for gen_type in g.table.fn_gen_types[it.name] {
sym := g.table.get_type_symbol(gen_type)
if g.pref.is_verbose {
println('gen fn `$it.name` for type `$sym.name`')
}
g.cur_generic_type = gen_type
g.gen_fn_decl(it)
}
g.cur_generic_type = 0
return
}
// g.cur_fn = it
fn_start_pos := g.out.len
msvc_attrs := g.write_fn_attrs()
// Live
is_livefn := 'live' in g.attrs
is_livemain := g.pref.is_livemain && is_livefn
is_liveshared := g.pref.is_liveshared && is_livefn
is_livemode := g.pref.is_livemain || g.pref.is_liveshared
is_live_wrap := is_livefn && is_livemode
if is_livefn && !is_livemode {
eprintln('INFO: compile with `v -live $g.pref.path `, if you want to use the [live] function $it.name .')
}
//
mut name := it.name
if name[0] in [`+`, `-`, `*`, `/`, `%`] {
name = util.replace_op(name)
}
if it.is_method {
name = g.table.get_type_symbol(it.receiver.typ).name + '_' + name
}
if it.language == .c {
name = util.no_dots(name)
} else {
name = c_name(name)
}
mut type_name := g.typ(it.return_type)
if g.cur_generic_type != 0 {
// foo<T>() => foo_int(), foo_string() etc
gen_name := g.typ(g.cur_generic_type)
name += '_' + gen_name
type_name = type_name.replace('T', gen_name)
}
// if g.pref.show_cc && it.is_builtin {
// println(name)
// }
// type_name := g.table.Type_to_str(it.return_type)
// Live functions are protected by a mutex, because otherwise they
// can be changed by the live reload thread, *while* they are
// running, with unpredictable results (usually just crashing).
// For this purpose, the actual body of the live function,
// is put under a non publicly accessible function, that is prefixed
// with 'impl_live_' .
if is_livemain {
g.hotcode_fn_names << name
}
mut impl_fn_name := name
if is_live_wrap {
impl_fn_name = 'impl_live_$name'
}
g.last_fn_c_name = impl_fn_name
//
if is_live_wrap {
if is_livemain {
g.definitions.write('$type_name (* $impl_fn_name)(')
g.write('$type_name no_impl_${name}(')
}
if is_liveshared {
g.definitions.write('$type_name ${impl_fn_name}(')
g.write('$type_name ${impl_fn_name}(')
}
} else {
if !(it.is_pub || g.pref.is_debug) {
g.write('static ')
g.definitions.write('static ')
}
fn_header := if msvc_attrs.len > 0 { '$type_name $msvc_attrs ${name}(' } else { '$type_name ${name}(' }
g.definitions.write(fn_header)
g.write(fn_header)
}
fargs, fargtypes := g.fn_args(it.args, it.is_variadic)
if it.no_body || (g.pref.use_cache && it.is_builtin) {
// Just a function header. Builtin function bodies are defined in builtin.o
g.definitions.writeln(');')
g.writeln(');')
return
}
g.definitions.writeln(');')
g.writeln(') {')
if is_live_wrap {
// The live function just calls its implementation dual, while ensuring
// that the call is wrapped by the mutex lock & unlock calls.
// Adding the mutex lock/unlock inside the body of the implementation
// function is not reliable, because the implementation function can do
// an early exit, which will leave the mutex locked.
mut fn_args_list := []string{}
for ia, fa in fargs {
fn_args_list << '${fargtypes[ia]} $fa'
}
mut live_fncall := '${impl_fn_name}(' + fargs.join(', ') + ');'
mut live_fnreturn := ''
if type_name != 'void' {
live_fncall = '$type_name res = $live_fncall'
live_fnreturn = 'return res;'
}
g.definitions.writeln('$type_name ${name}(' + fn_args_list.join(', ') + ');')
g.hotcode_definitions.writeln('$type_name ${name}(' + fn_args_list.join(', ') + '){')
g.hotcode_definitions.writeln(' pthread_mutex_lock(&live_fn_mutex);')
g.hotcode_definitions.writeln(' $live_fncall')
g.hotcode_definitions.writeln(' pthread_mutex_unlock(&live_fn_mutex);')
g.hotcode_definitions.writeln(' $live_fnreturn')
g.hotcode_definitions.writeln('}')
}
// Profiling mode? Start counting at the beginning of the function (save current time).
if g.pref.is_prof {
g.profile_fn(it.name)
}
g.stmts(it.stmts)
// ////////////
if it.return_type == table.void_type {
g.write_defer_stmts_when_needed()
}
// /////////
if g.autofree {
// TODO: remove this, when g.write_autofree_stmts_when_needed works properly
g.writeln(g.autofree_scope_vars(it.body_pos.pos))
}
g.writeln('}')
g.defer_stmts = []
if g.pref.printfn_list.len > 0 && g.last_fn_c_name in g.pref.printfn_list {
println(g.out.after(fn_start_pos))
}
}
fn (mut g Gen) write_autofree_stmts_when_needed(r ast.Return) {
// TODO: write_autofree_stmts_when_needed should account for the current local scope vars.
// TODO: write_autofree_stmts_when_needed should not free the returned variables.
// It may require rewriting g.return_statement to assign the expressions
// to temporary variables, then protecting *them* from autofreeing ...
// g.writeln('// autofreeings before return: -------')
// g.writeln(g.autofree_scope_vars(g.fn_decl.body_pos.pos))
// g.writeln('//--------------------------------------------------- ') // //g.write( g.autofree_scope_vars(r.pos.pos) )
}
fn (mut g Gen) write_defer_stmts_when_needed() {
if g.defer_stmts.len > 0 {
g.write_defer_stmts()
}
if g.defer_profile_code.len > 0 {
g.writeln('')
g.writeln('\t// defer_profile_code')
g.writeln(g.defer_profile_code)
g.writeln('')
}
}
// fn decl args
fn (mut g Gen) fn_args(args []table.Arg, is_variadic bool) ([]string, []string) {
mut fargs := []string{}
mut fargtypes := []string{}
no_names := args.len > 0 && args[0].name == 'arg_1'
for i, arg in args {
caname := c_name(arg.name)
typ := g.unwrap_generic(arg.typ)
arg_type_sym := g.table.get_type_symbol(typ)
mut arg_type_name := g.typ(typ) // util.no_dots(arg_type_sym.name)
// if arg.name == 'xxx' {
// println('xxx arg type= ' + arg_type_name)
// }
if g.cur_generic_type != 0 {
// foo<T>() => foo_int(), foo_string() etc
gen_name := g.typ(g.cur_generic_type)
arg_type_name = arg_type_name.replace('T', gen_name)
}
is_varg := i == args.len - 1 && is_variadic
if is_varg {
varg_type_str := int(arg.typ).str()
if varg_type_str !in g.variadic_args {
g.variadic_args[varg_type_str] = 0
}
arg_type_name = 'varg_' + g.typ(arg.typ).replace('*', '_ptr')
}
if arg_type_sym.kind == .function {
info := arg_type_sym.info as table.FnType
func := info.func
if !info.is_anon {
g.write(arg_type_name + ' ' + caname)
g.definitions.write(arg_type_name + ' ' + caname)
fargs << caname
fargtypes << arg_type_name
} else {
g.write('${g.typ(func.return_type)} (*$caname)(')
g.definitions.write('${g.typ(func.return_type)} (*$caname)(')
g.fn_args(func.args, func.is_variadic)
g.write(')')
g.definitions.write(')')
}
} else if no_names {
g.write(arg_type_name)
g.definitions.write(arg_type_name)
fargs << ''
fargtypes << arg_type_name
} else {
mut nr_muls := arg.typ.nr_muls()
s := arg_type_name + ' ' + caname
if arg.is_mut {
// mut arg needs one *
nr_muls = 1
}
// if nr_muls > 0 && !is_varg {
// s = arg_type_name + strings.repeat(`*`, nr_muls) + ' ' + caname
// }
g.write(s)
g.definitions.write(s)
fargs << caname
fargtypes << arg_type_name
}
if i < args.len - 1 {
g.write(', ')
g.definitions.write(', ')
}
}
return fargs, fargtypes
}
fn (mut g Gen) call_expr(node ast.CallExpr) {
// NOTE: everything could be done this way
// see my comment in parser near anon_fn
if node.left is ast.AnonFn {
g.expr(node.left)
}
if node.should_be_skipped {
return
}
g.inside_call = true
defer {
g.inside_call = false
}
gen_or := node.or_block.kind != .absent
is_gen_or_and_assign_rhs := gen_or && g.is_assign_rhs
cur_line := if is_gen_or_and_assign_rhs {
line := g.go_before_stmt(0)
g.out.write(tabs[g.indent])
line
} else {
''
}
tmp_opt := if gen_or { g.new_tmp_var() } else { '' }
if gen_or {
styp := g.typ(node.return_type.set_flag(.optional))
g.write('$styp $tmp_opt = ')
}
if node.is_method && !node.is_field {
if node.name == 'writeln' && g.pref.experimental &&
node.args.len > 0 && node.args[0].expr is ast.StringInterLiteral &&
g.table.get_type_symbol(node.receiver_type).name == 'strings.Builder' {
g.string_inter_literal_sb_optimized(node)
} else {
g.method_call(node)
}
} else {
g.fn_call(node)
}
if gen_or {
g.or_block(tmp_opt, node.or_block, node.return_type)
if is_gen_or_and_assign_rhs {
g.write('\n$cur_line$tmp_opt')
}
}
}
[inline]
pub fn (g &Gen) unwrap_generic(typ table.Type) table.Type {
if typ.has_flag(.generic) {
// return g.cur_generic_type
return g.cur_generic_type.derive(typ).clear_flag(.generic)
}
return typ
}
fn (mut g Gen) method_call(node ast.CallExpr) {
// TODO: there are still due to unchecked exprs (opt/some fn arg)
if node.left_type == 0 {
verror('method receiver type is 0, this means there are some uchecked exprs')
}
// mut receiver_type_name := g.cc_type(node.receiver_type)
// mut receiver_type_name := g.typ(node.receiver_type)
typ_sym := g.table.get_type_symbol(g.unwrap_generic(node.receiver_type))
mut receiver_type_name := util.no_dots(typ_sym.name)
if typ_sym.kind == .interface_ {
// Speaker_name_table[s._interface_idx].speak(s._object)
g.write('${c_name(receiver_type_name)}_name_table[')
g.expr(node.left)
dot := if node.left_type.is_ptr() { '->' } else { '.' }
g.write('${dot}_interface_idx].${node.name}(')
g.expr(node.left)
g.write('${dot}_object')
if node.args.len > 0 {
g.write(', ')
g.call_args(node.args, node.expected_arg_types)
}
g.write(')')
return
}
left_sym := g.table.get_type_symbol(node.left_type)
if left_sym.kind == .array {
match node.name {
'filter' {
g.gen_array_filter(node)
return
}
'insert' {
g.gen_array_insert(node)
return
}
'map' {
g.gen_array_map(node)
return
}
'prepend' {
g.gen_array_prepend(node)
return
}
else {}
}
}
if node.name == 'str' {
mut styp := g.typ(node.receiver_type)
if node.receiver_type.is_ptr() {
styp = styp.replace('*', '')
}
g.gen_str_for_type_with_styp(node.receiver_type, styp)
}
// TODO performance, detect `array` method differently
if left_sym.kind == .array && node.name in
['repeat', 'sort_with_compare', 'free', 'push_many', 'trim', 'first', 'last', 'clone', 'reverse', 'slice'] {
// && rec_sym.name == 'array' {
// && rec_sym.name == 'array' && receiver_name.starts_with('array') {
// `array_byte_clone` => `array_clone`
receiver_type_name = 'array'
if node.name in ['last', 'first'] {
return_type_str := g.typ(node.return_type)
g.write('*($return_type_str*)')
}
}
mut name := util.no_dots('${receiver_type_name}_$node.name')
// Check if expression is: arr[a..b].clone(), arr[a..].clone()
// if so, then instead of calling array_clone(&array_slice(...))
// call array_clone_static(array_slice(...))
mut is_range_slice := false
if node.receiver_type.is_ptr() && !node.left_type.is_ptr() {
if node.left is ast.IndexExpr {
idx := (node.left as ast.IndexExpr).index
if idx is ast.RangeExpr {
// expr is arr[range].clone()
// use array_clone_static instead of array_clone
name = util.no_dots('${receiver_type_name}_${node.name}_static')
is_range_slice = true
}
}
}
// if node.receiver_type != 0 {
// g.write('/*${g.typ(node.receiver_type)}*/')
// g.write('/*expr_type=${g.typ(node.left_type)} rec type=${g.typ(node.receiver_type)}*/')
// }
if !node.receiver_type.is_ptr() && node.left_type.is_ptr() && node.name == 'str' {
g.write('ptr_str(')
} else {
g.write('${name}(')
}
if node.receiver_type.is_ptr() && !node.left_type.is_ptr() {
// The receiver is a reference, but the caller provided a value
// Add `&` automatically.
// TODO same logic in call_args()
if !is_range_slice {
g.write('&')
}
} else if !node.receiver_type.is_ptr() && node.left_type.is_ptr() && node.name != 'str' {
g.write('/*rec*/*')
}
g.expr(node.left)
is_variadic := node.expected_arg_types.len > 0 && node.expected_arg_types[node.expected_arg_types.len -
1].has_flag(.variadic)
if node.args.len > 0 || is_variadic {
g.write(', ')
}
// /////////
/*
if name.contains('subkeys') {
println('call_args $name $node.arg_types.len')
for t in node.arg_types {
sym := g.table.get_type_symbol(t)
print('$sym.name ')
}
println('')
}
*/
// ///////
g.call_args(node.args, node.expected_arg_types)
g.write(')')
}
fn (mut g Gen) fn_call(node ast.CallExpr) {
// call struct field with fn type
// TODO: test node.left instead
// left & left_type will be `x` and `x type` in `x.fieldfn()`
// will be `0` for `foo()`
if node.left_type != 0 {
g.expr(node.left)
if node.left_type.is_ptr() {
g.write('->')
} else {
g.write('.')
}
}
mut name := node.name
is_print := name == 'println' || name == 'print'
print_method := if name == 'println' { 'println' } else { 'print' }
is_json_encode := name == 'json.encode'
is_json_decode := name == 'json.decode'
g.is_json_fn = is_json_encode || is_json_decode
mut json_type_str := ''
if g.is_json_fn {
if name == 'json.encode' {
g.write('json__json_print(')
g.gen_json_for_type(node.args[0].typ)
json_type_str = g.table.get_type_symbol(node.args[0].typ).name
} else {
g.insert_before_stmt('// json.decode')
ast_type := node.args[0].expr as ast.Type
// `json.decode(User, s)` => json.decode_User(s)
sym := g.table.get_type_symbol(ast_type.typ)
name += '_' + sym.name
g.gen_json_for_type(ast_type.typ)
}
}
if node.language == .c {
// Skip "C."
g.is_c_call = true
name = util.no_dots(name[2..])
} else {
name = c_name(name)
}
if is_json_encode {
// `json__encode` => `json__encode_User`
name += '_' + util.no_dots(json_type_str)
}
if node.generic_type != table.void_type && node.generic_type != 0 {
// `foo<int>()` => `foo_int()`
name += '_' + g.typ(node.generic_type)
}
// Generate tmp vars for values that have to be freed.
/*
mut tmps := []string{}
for arg in node.args {
if arg.typ == table.string_type_idx || is_print {
tmp := g.new_tmp_var()
tmps << tmp
g.write('string $tmp = ')
g.expr(arg.expr)
g.writeln('; //memory')
}
}
*/
if is_print && node.args[0].typ != table.string_type {
typ := node.args[0].typ
mut styp := g.typ(typ)
sym := g.table.get_type_symbol(typ)
if typ.is_ptr() {
styp = styp.replace('*', '')
}
mut str_fn_name := g.gen_str_for_type_with_styp(typ, styp)
if g.autofree && !typ.has_flag(.optional) {
// Create a temporary variable so that the value can be freed
tmp := g.new_tmp_var()
// tmps << tmp
g.write('string $tmp = ${str_fn_name}(')
g.expr(node.args[0].expr)
g.writeln('); ${print_method}($tmp); string_free(&$tmp); //MEM2 $styp')
} else {
expr := node.args[0].expr
is_var := match expr {
ast.SelectorExpr { true }
ast.Ident { true }
else { false }
}
if typ.is_ptr() && sym.kind != .struct_ {
// ptr_str() for pointers
styp = 'ptr'
str_fn_name = 'ptr_str'
}
if sym.kind == .enum_ {
if is_var {
g.write('${print_method}(${str_fn_name}(')
} else {
// when no var, print string directly
g.write('${print_method}(tos3("')
}
if typ.is_ptr() {
// dereference
g.write('*')
}
g.enum_expr(expr)
if !is_var {
// end of string
g.write('"')
}
} else {
g.write('${print_method}(${str_fn_name}(')
if typ.is_ptr() && sym.kind == .struct_ {
// dereference
g.write('*')
}
g.expr(expr)
}
g.write('))')
}
} else if g.pref.is_debug && node.name == 'panic' {
paline, pafile, pamod, pafn := g.panic_debug_info(node.pos)
g.write('panic_debug($paline, tos3("$pafile"), tos3("$pamod"), tos3("$pafn"), ')
g.call_args(node.args, node.expected_arg_types)
g.write(')')
} else {
g.write('${g.get_ternary_name(name)}(')
if is_json_decode {
g.write('json__json_parse(')
// Skip the first argument in json.decode which is a type
// its name was already used to generate the function call
g.call_args(node.args[1..], node.expected_arg_types)
} else {
g.call_args(node.args, node.expected_arg_types)
}
g.write(')')
}
g.is_c_call = false
if g.is_json_fn {
g.write(')')
g.is_json_fn = false
}
}
fn (mut g Gen) call_args(args []ast.CallArg, expected_types []table.Type) {
is_variadic := expected_types.len > 0 && expected_types[expected_types.len - 1].has_flag(.variadic)
is_forwarding_varg := args.len > 0 && args[args.len - 1].typ.has_flag(.variadic)
gen_vargs := is_variadic && !is_forwarding_varg
for i, arg in args {
if gen_vargs && i == expected_types.len - 1 {
break
}
mut is_interface := false
// some c fn definitions dont have args (cfns.v) or are not updated in checker
// when these are fixed we wont need this check
if i < expected_types.len {
if expected_types[i] != 0 {
// Cast a type to interface
// `foo(dog)` => `foo(I_Dog_to_Animal(dog))`
exp_sym := g.table.get_type_symbol(expected_types[i])
// exp_styp := g.typ(expected_types[arg_no]) // g.table.get_type_symbol(expected_types[arg_no])
// styp := g.typ(arg.typ) // g.table.get_type_symbol(arg.typ)
if exp_sym.kind == .interface_ {
g.interface_call(arg.typ, expected_types[i])
is_interface = true
}
}
if is_interface {
g.expr(arg.expr)
} else {
g.ref_or_deref_arg(arg, expected_types[i])
}
} else {
g.expr(arg.expr)
}
if is_interface {
g.write(')')
}
if i < args.len - 1 || gen_vargs {
g.write(', ')
}
}
arg_nr := expected_types.len - 1
if gen_vargs {
varg_type := expected_types[expected_types.len - 1]
struct_name := 'varg_' + g.typ(varg_type).replace('*', '_ptr')
variadic_count := args.len - arg_nr
varg_type_str := int(varg_type).str()
if variadic_count > g.variadic_args[varg_type_str] {
g.variadic_args[varg_type_str] = variadic_count
}
g.write('($struct_name){.len=$variadic_count,.args={')
if variadic_count > 0 {
for j in arg_nr .. args.len {
g.ref_or_deref_arg(args[j], varg_type)
if j < args.len - 1 {
g.write(', ')
}
}
} else {
g.write('0')
}
g.write('}}')
}
}
[inline]
fn (mut g Gen) ref_or_deref_arg(arg ast.CallArg, expected_type table.Type) {
arg_is_ptr := expected_type.is_ptr() || expected_type.idx() in table.pointer_type_idxs
expr_is_ptr := arg.typ.is_ptr() || arg.typ.idx() in table.pointer_type_idxs
exp_sym := g.table.get_type_symbol(expected_type)
if arg.is_mut && !arg_is_ptr {
g.write('&/*mut*/')
} else if arg_is_ptr && !expr_is_ptr {
if arg.is_mut {
if exp_sym.kind == .array {
if arg.expr is ast.Ident && (arg.expr as ast.Ident).kind == .variable {
g.write('&/*arr*/')
g.expr(arg.expr)
} else {
// Special case for mutable arrays. We can't `&` function
// results, have to use `(array[]){ expr }[0]` hack.
g.write('&/*111*/(array[]){')
g.expr(arg.expr)
g.write('}[0]')
}
return
}
}
if !g.is_json_fn {
arg_typ_sym := g.table.get_type_symbol(arg.typ)
if arg_typ_sym.kind != .function {
g.write('(voidptr)&/*qq*/')
}
}
}
g.expr_with_cast(arg.expr, arg.typ, expected_type)
}
fn (mut g Gen) is_gui_app() bool {
$if windows {
for cf in g.table.cflags {
if cf.value == 'gdi32' {
return true
}
}
}
return false
}
fn (g &Gen) fileis(s string) bool {
return g.file.path.contains(s)
}
fn (mut g Gen) write_fn_attrs() string {
mut msvc_attrs := ''
for attr in g.attrs {
match attr {
'inline' {
g.write('inline ')
}
'no_inline' {
// since these are supported by GCC, clang and MSVC, we can consider them officially supported.
g.write('__NOINLINE ')
}
'irq_handler' {
g.write('__IRQHANDLER ')
}
'_cold' {
// GCC/clang attributes
// prefixed by _ to indicate they're for advanced users only and not really supported by V.
// source for descriptions: https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-Attributes
// The cold attribute on functions is used to inform the compiler that the function is unlikely
// to be executed. The function is optimized for size rather than speed and on many targets it
// is placed into a special subsection of the text section so all cold functions appear close
// together, improving code locality of non-cold parts of program.
g.write('__attribute__((cold)) ')
}
'_constructor' {
// The constructor attribute causes the function to be called automatically before execution
// enters main ().
g.write('__attribute__((constructor)) ')
}
'_destructor' {
// The destructor attribute causes the function to be called automatically after main ()
// completes or exit () is called.
g.write('__attribute__((destructor)) ')
}
'_flatten' {
// Generally, inlining into a function is limited. For a function marked with this attribute,
// every call inside this function is inlined, if possible.
g.write('__attribute__((flatten)) ')
}
'_hot' {
// The hot attribute on a function is used to inform the compiler that the function is a hot
// spot of the compiled program.
g.write('__attribute__((hot)) ')
}
'_malloc' {
// This tells the compiler that a function is malloc-like, i.e., that the pointer P returned by
// the function cannot alias any other pointer valid when the function returns, and moreover no
// pointers to valid objects occur in any storage addressed by P.
g.write('__attribute__((malloc)) ')
}
'_pure' {
// Calls to functions whose return value is not affected by changes to the observable state
// of the program and that have no observable effects on such state other than to return a
// value may lend themselves to optimizations such as common subexpression elimination.
// Declaring such functions with the const attribute allows GCC to avoid emitting some calls in
// repeated invocations of the function with the same argument values.
g.write('__attribute__((const)) ')
}
'windows_stdcall' {
// windows attributes (msvc/mingw)
// prefixed by windows to indicate they're for advanced users only and not really supported by V.
msvc_attrs += '__stdcall '
}
else {
// nothing but keep V happy
}
}
}
return msvc_attrs
}