267 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			267 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			V
		
	
	
| import math.stats
 | |
| import math
 | |
| 
 | |
| fn test_freq() {
 | |
| 	// Tests were also verified on Wolfram Alpha
 | |
| 	data := [f64(10.0),f64(10.0),f64(5.9),f64(2.7)]
 | |
| 	mut o := stats.freq(data,10.0)
 | |
| 	assert o == 2
 | |
| 	o = stats.freq(data,2.7)
 | |
| 	assert o == 1
 | |
| 	o = stats.freq(data,15)
 | |
| 	assert o == 0
 | |
| }
 | |
| 
 | |
| fn tst_res(str1 string, str2 string) bool {
 | |
| 	if (math.abs(str1.f64() - str2.f64())) < 1e-5 {
 | |
| 		return true
 | |
| 	}
 | |
| 	return false
 | |
| }
 | |
| 
 | |
| fn test_mean() {
 | |
| 	// Tests were also verified on Wolfram Alpha
 | |
| 	mut data := [f64(10.0),f64(4.45),f64(5.9),f64(2.7)]
 | |
| 	mut o := stats.mean(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '5.762500')
 | |
| 	data = [f64(-3.0),f64(67.31),f64(4.4),f64(1.89)]
 | |
| 	o = stats.mean(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '17.650000')
 | |
| 	data = [f64(12.0),f64(7.88),f64(76.122),f64(54.83)]
 | |
| 	o = stats.mean(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '37.708000')
 | |
| }
 | |
| 
 | |
| fn test_geometric_mean() {
 | |
| 	// Tests were also verified on Wolfram Alpha
 | |
| 	mut data := [f64(10.0),f64(4.45),f64(5.9),f64(2.7)]
 | |
| 	mut o := stats.geometric_mean(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(),'5.15993')
 | |
| 	data = [f64(-3.0),f64(67.31),f64(4.4),f64(1.89)]
 | |
| 	o = stats.geometric_mean(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert o.str().eq('nan') || o.str().eq('-nan') || o.str().eq('-1.#IND00') || o == f64(0) || o.str().eq('-nan(ind)') // Because in math it yields a complex number
 | |
| 	data = [f64(12.0),f64(7.88),f64(76.122),f64(54.83)]
 | |
| 	o = stats.geometric_mean(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(),'25.064496')
 | |
| }
 | |
| 
 | |
| fn test_harmonic_mean() {
 | |
| 	// Tests were also verified on Wolfram Alpha
 | |
| 	mut data := [f64(10.0),f64(4.45),f64(5.9),f64(2.7)]
 | |
| 	mut o := stats.harmonic_mean(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '4.626519')
 | |
| 	data = [f64(-3.0),f64(67.31),f64(4.4),f64(1.89)]
 | |
| 	o = stats.harmonic_mean(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '9.134577')
 | |
| 	data = [f64(12.0),f64(7.88),f64(76.122),f64(54.83)]
 | |
| 	o = stats.harmonic_mean(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '16.555477')
 | |
| }
 | |
| 
 | |
| fn test_median() {
 | |
| 	// Tests were also verified on Wolfram Alpha
 | |
| 	// Assumes sorted array
 | |
| 
 | |
| 	// Even
 | |
| 	mut data := [f64(2.7),f64(4.45),f64(5.9),f64(10.0)]
 | |
| 	mut o := stats.median(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '5.175000')
 | |
| 	data = [f64(-3.0),f64(1.89),f64(4.4),f64(67.31)]
 | |
| 	o = stats.median(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '3.145000')
 | |
| 	data = [f64(7.88),f64(12.0),f64(54.83),f64(76.122)]
 | |
| 	o = stats.median(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '33.415000')
 | |
| 
 | |
| 	// Odd
 | |
| 	data = [f64(2.7),f64(4.45),f64(5.9),f64(10.0),f64(22)]
 | |
| 	o = stats.median(data)
 | |
| 	assert o == f64(5.9)
 | |
| 	data = [f64(-3.0),f64(1.89),f64(4.4),f64(9),f64(67.31)]
 | |
| 	o = stats.median(data)
 | |
| 	assert o == f64(4.4)
 | |
| 	data = [f64(7.88),f64(3.3),f64(12.0),f64(54.83),f64(76.122)]
 | |
| 	o = stats.median(data)
 | |
| 	assert o == f64(12.0)
 | |
| }
 | |
| 
 | |
| fn test_mode() {
 | |
| 	// Tests were also verified on Wolfram Alpha
 | |
| 	mut data := [f64(2.7),f64(2.7),f64(4.45),f64(5.9),f64(10.0)]
 | |
| 	mut o := stats.mode(data)
 | |
| 	assert o == f64(2.7)
 | |
| 	data = [f64(-3.0),f64(1.89),f64(1.89),f64(1.89),f64(9),f64(4.4),f64(4.4),f64(9),f64(67.31)]
 | |
| 	o = stats.mode(data)
 | |
| 	assert o == f64(1.89)
 | |
| 	// Testing greedy nature
 | |
| 	data = [f64(2.0),f64(4.0),f64(2.0),f64(4.0)]
 | |
| 	o = stats.mode(data)
 | |
| 	assert o == f64(2.0)
 | |
| }
 | |
| 
 | |
| fn test_rms() {
 | |
| 	// Tests were also verified on Wolfram Alpha
 | |
| 	mut data := [f64(10.0),f64(4.45),f64(5.9),f64(2.7)]
 | |
| 	mut o := stats.rms(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '6.362046')
 | |
| 	data = [f64(-3.0),f64(67.31),f64(4.4),f64(1.89)]
 | |
| 	o = stats.rms(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '33.773393')
 | |
| 	data = [f64(12.0),f64(7.88),f64(76.122),f64(54.83)]
 | |
| 	o = stats.rms(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '47.452561')
 | |
| }
 | |
| 
 | |
| fn test_population_variance() {
 | |
| 	// Tests were also verified on Wolfram Alpha
 | |
| 	mut data := [f64(10.0),f64(4.45),f64(5.9),f64(2.7)]
 | |
| 	mut o := stats.population_variance(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '7.269219')
 | |
| 	data = [f64(-3.0),f64(67.31),f64(4.4),f64(1.89)]
 | |
| 	o = stats.population_variance(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '829.119550')
 | |
| 	data = [f64(12.0),f64(7.88),f64(76.122),f64(54.83)]
 | |
| 	o = stats.population_variance(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '829.852282')
 | |
| }
 | |
| 
 | |
| fn test_sample_variance() {
 | |
| 	// Tests were also verified on Wolfram Alpha
 | |
| 	mut data := [f64(10.0),f64(4.45),f64(5.9),f64(2.7)]
 | |
| 	mut o := stats.sample_variance(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '9.692292')
 | |
| 	data = [f64(-3.0),f64(67.31),f64(4.4),f64(1.89)]
 | |
| 	o = stats.sample_variance(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '1105.492733')
 | |
| 	data = [f64(12.0),f64(7.88),f64(76.122),f64(54.83)]
 | |
| 	o = stats.sample_variance(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '1106.469709')
 | |
| }
 | |
| 
 | |
| fn test_population_stddev() {
 | |
| 	// Tests were also verified on Wolfram Alpha
 | |
| 	mut data := [f64(10.0),f64(4.45),f64(5.9),f64(2.7)]
 | |
| 	mut o := stats.population_stddev(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '2.696149')
 | |
| 	data = [f64(-3.0),f64(67.31),f64(4.4),f64(1.89)]
 | |
| 	o = stats.population_stddev(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '28.794436')
 | |
| 	data = [f64(12.0),f64(7.88),f64(76.122),f64(54.83)]
 | |
| 	o = stats.population_stddev(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '28.807157')
 | |
| }
 | |
| 
 | |
| fn test_sample_stddev() {
 | |
| 	// Tests were also verified on Wolfram Alpha
 | |
| 	mut data := [f64(10.0),f64(4.45),f64(5.9),f64(2.7)]
 | |
| 	mut o := stats.sample_stddev(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '3.113245')
 | |
| 	data = [f64(-3.0),f64(67.31),f64(4.4),f64(1.89)]
 | |
| 	o = stats.sample_stddev(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '33.248951')
 | |
| 	data = [f64(12.0),f64(7.88),f64(76.122),f64(54.83)]
 | |
| 	o = stats.sample_stddev(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '33.263639')
 | |
| }
 | |
| 
 | |
| fn test_mean_absdev() {
 | |
| 	// Tests were also verified on Wolfram Alpha
 | |
| 	mut data := [f64(10.0),f64(4.45),f64(5.9),f64(2.7)]
 | |
| 	mut o := stats.mean_absdev(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '2.187500')
 | |
| 	data = [f64(-3.0),f64(67.31),f64(4.4),f64(1.89)]
 | |
| 	o = stats.mean_absdev(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '24.830000')
 | |
| 	data = [f64(12.0),f64(7.88),f64(76.122),f64(54.83)]
 | |
| 	o = stats.mean_absdev(data)
 | |
| 	// Some issue with precision comparison in f64 using == operator hence serializing to string
 | |
| 	assert tst_res(o.str(), '27.768000')
 | |
| }
 | |
| 
 | |
| fn test_min() {
 | |
| 	// Tests were also verified on Wolfram Alpha
 | |
| 	mut data := [f64(10.0),f64(4.45),f64(5.9),f64(2.7)]
 | |
| 	mut o := stats.min(data)
 | |
| 	assert o == f64(2.7)
 | |
| 	data = [f64(-3.0),f64(67.31),f64(4.4),f64(1.89)]
 | |
| 	o = stats.min(data)
 | |
| 	assert o == f64(-3.0)
 | |
| 	data = [f64(12.0),f64(7.88),f64(76.122),f64(54.83)]
 | |
| 	o = stats.min(data)
 | |
| 	assert o == f64(7.88)
 | |
| }
 | |
| 
 | |
| fn test_max() {
 | |
| 	// Tests were also verified on Wolfram Alpha
 | |
| 	mut data := [f64(10.0),f64(4.45),f64(5.9),f64(2.7)]
 | |
| 	mut o := stats.max(data)
 | |
| 	assert o == f64(10.0)
 | |
| 	data = [f64(-3.0),f64(67.31),f64(4.4),f64(1.89)]
 | |
| 	o = stats.max(data)
 | |
| 	assert o == f64(67.31)
 | |
| 	data = [f64(12.0),f64(7.88),f64(76.122),f64(54.83)]
 | |
| 	o = stats.max(data)
 | |
| 	assert o == f64(76.122)
 | |
| }
 | |
| 
 | |
| fn test_range() {
 | |
| 	// Tests were also verified on Wolfram Alpha
 | |
| 	mut data := [f64(10.0),f64(4.45),f64(5.9),f64(2.7)]
 | |
| 	mut o := stats.range(data)
 | |
| 	assert o == f64(7.3)
 | |
| 	data = [f64(-3.0),f64(67.31),f64(4.4),f64(1.89)]
 | |
| 	o = stats.range(data)
 | |
| 	assert o == f64(70.31)
 | |
| 	data = [f64(12.0),f64(7.88),f64(76.122),f64(54.83)]
 | |
| 	o = stats.range(data)
 | |
| 	assert o == f64(68.242)
 | |
| }
 | |
| 
 | |
| fn test_passing_empty() {
 | |
| 	data := []f64{}
 | |
| 	assert stats.freq(data,0) == 0
 | |
| 	assert stats.mean(data) == f64(0)
 | |
| 	assert stats.geometric_mean(data) == f64(0)
 | |
| 	assert stats.harmonic_mean(data) == f64(0)
 | |
| 	assert stats.median(data) == f64(0)
 | |
| 	assert stats.mode(data) == f64(0)
 | |
| 	assert stats.rms(data) == f64(0)
 | |
| 	assert stats.population_variance(data) == f64(0)
 | |
| 	assert stats.sample_variance(data) == f64(0)
 | |
| 	assert stats.population_stddev(data) == f64(0)
 | |
| 	assert stats.sample_stddev(data) == f64(0)
 | |
| 	assert stats.mean_absdev(data) == f64(0)
 | |
| 	assert stats.min(data) == f64(0)
 | |
| 	assert stats.max(data) == f64(0)
 | |
| 	assert stats.range(data) == f64(0)
 | |
| }
 |