442 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			442 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			V
		
	
	
// Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
 | 
						|
// Use of this source code is governed by an MIT license
 | 
						|
// that can be found in the LICENSE file.
 | 
						|
 | 
						|
module time
 | 
						|
 | 
						|
import rand
 | 
						|
 | 
						|
// https://en.wikipedia.org/wiki/Month#Julian_and_Gregorian_calendars
 | 
						|
const (
 | 
						|
	MonthDays = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
 | 
						|
)
 | 
						|
 | 
						|
#include <time.h>
 | 
						|
struct Time {
 | 
						|
pub:
 | 
						|
	year   int
 | 
						|
	month  int
 | 
						|
	day    int
 | 
						|
	hour   int
 | 
						|
	minute int
 | 
						|
	second int
 | 
						|
	uni    int // TODO it's safe to use "unix" now
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
fn C.localtime(int) *C.tm
 | 
						|
 | 
						|
fn remove_me_when_c_bug_is_fixed() { // TODO 
 | 
						|
}
 | 
						|
 | 
						|
struct C.tm {
 | 
						|
	tm_year int
 | 
						|
	tm_mon  int
 | 
						|
	tm_mday int
 | 
						|
	tm_hour int
 | 
						|
	tm_min  int
 | 
						|
	tm_sec  int
 | 
						|
}
 | 
						|
 | 
						|
pub fn now() Time {
 | 
						|
	t := C.time(0)
 | 
						|
	mut now := &C.tm{!}
 | 
						|
	now = C.localtime(&t)
 | 
						|
	return convert_ctime(now)
 | 
						|
}
 | 
						|
 | 
						|
pub fn random() Time {
 | 
						|
	now_unix := now().uni
 | 
						|
	rand_unix := rand.next(now_unix)
 | 
						|
 | 
						|
	return time.unix(rand_unix)
 | 
						|
}
 | 
						|
 | 
						|
const (
 | 
						|
// The unsigned zero year for internal calculations.
 | 
						|
	// Must be 1 mod 400, and times before it will not compute correctly,
 | 
						|
	// but otherwise can be changed at will.
 | 
						|
	absoluteZeroYear = i64(-292277022399) 
 | 
						|
 | 
						|
	secondsPerMinute = 60
 | 
						|
	secondsPerHour   = 60 * secondsPerMinute
 | 
						|
	secondsPerDay    = 24 * secondsPerHour
 | 
						|
	secondsPerWeek   = 7 * secondsPerDay
 | 
						|
	daysPer400Years  = 365*400 + 97
 | 
						|
	daysPer100Years  = 365*100 + 24
 | 
						|
	daysPer4Years    = 365*4 + 1
 | 
						|
 | 
						|
 daysBefore = [ 
 | 
						|
	0,
 | 
						|
	31,
 | 
						|
	31 + 28,
 | 
						|
	31 + 28 + 31,
 | 
						|
	31 + 28 + 31 + 30,
 | 
						|
	31 + 28 + 31 + 30 + 31,
 | 
						|
	31 + 28 + 31 + 30 + 31 + 30,
 | 
						|
	31 + 28 + 31 + 30 + 31 + 30 + 31,
 | 
						|
	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
 | 
						|
	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
 | 
						|
	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
 | 
						|
	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
 | 
						|
	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31,
 | 
						|
] 
 | 
						|
 
 | 
						|
)
 | 
						|
 
 | 
						|
 | 
						|
// Based on Go's time package. 
 | 
						|
// Copyright 2009 The Go Authors. 
 | 
						|
pub fn unix(abs int) Time {
 | 
						|
	// Split into time and day.
 | 
						|
	mut d := abs / secondsPerDay
 | 
						|
 | 
						|
	// Account for 400 year cycles.
 | 
						|
	mut n := d / daysPer400Years
 | 
						|
	mut y := 400 * n
 | 
						|
	d -= daysPer400Years * n
 | 
						|
 | 
						|
	// Cut off 100-year cycles.
 | 
						|
	// The last cycle has one extra leap year, so on the last day
 | 
						|
	// of that year, day / daysPer100Years will be 4 instead of 3.
 | 
						|
	// Cut it back down to 3 by subtracting n>>2.
 | 
						|
	n = d / daysPer100Years
 | 
						|
	n -= n >> 2
 | 
						|
	y += 100 * n
 | 
						|
	d -= daysPer100Years * n
 | 
						|
 | 
						|
	// Cut off 4-year cycles.
 | 
						|
	// The last cycle has a missing leap year, which does not
 | 
						|
	// affect the computation.
 | 
						|
	n = d / daysPer4Years
 | 
						|
	y += 4 * n
 | 
						|
	d -= daysPer4Years * n
 | 
						|
 | 
						|
	// Cut off years within a 4-year cycle.
 | 
						|
	// The last year is a leap year, so on the last day of that year,
 | 
						|
	// day / 365 will be 4 instead of 3. Cut it back down to 3
 | 
						|
	// by subtracting n>>2.
 | 
						|
	n = d / 365
 | 
						|
	n -= n >> 2
 | 
						|
	y += n
 | 
						|
	d -= 365 * n
 | 
						|
 | 
						|
	yday := int(d)
 | 
						|
	mut day := yday 
 | 
						|
 | 
						|
	year := abs / int(3.154e+7) + 1970 //int(i64(y) + absoluteZeroYear)
 | 
						|
	hour := int(abs%secondsPerDay) / secondsPerHour 
 | 
						|
	minute := int(abs % secondsPerHour) / secondsPerMinute 
 | 
						|
	second := int(abs % secondsPerMinute) 
 | 
						|
	 
 | 
						|
	if is_leap_year(year) {
 | 
						|
		// Leap year
 | 
						|
		if day > 31+29-1 { 
 | 
						|
			// After leap day; pretend it wasn't there.
 | 
						|
			day--
 | 
						|
		} 		else if day == 31+29-1 { 
 | 
						|
			// Leap day.
 | 
						|
			day = 29
 | 
						|
			return Time{year:year, month:2, day:day, hour:hour, minute: minute, second: second} 
 | 
						|
		} 
 | 
						|
	}
 | 
						|
 | 
						|
	// Estimate month on assumption that every month has 31 days.
 | 
						|
	// The estimate may be too low by at most one month, so adjust.
 | 
						|
	mut month := day / 31 
 | 
						|
	mut begin := 0 
 | 
						|
	end := int(daysBefore[month+1])
 | 
						|
	if day >= end {
 | 
						|
		month++
 | 
						|
		begin = end
 | 
						|
	} else {
 | 
						|
		begin = int(daysBefore[month])
 | 
						|
	}
 | 
						|
 | 
						|
	month++ // because January is 1
 | 
						|
	day = day - begin + 1
 | 
						|
	return Time{year:year, month: month, day:day, hour:hour, minute: minute, second: second} 
 | 
						|
}
 | 
						|
 | 
						|
pub fn convert_ctime(t tm) Time {
 | 
						|
	return Time {
 | 
						|
		year: t.tm_year + 1900
 | 
						|
		month: t.tm_mon + 1
 | 
						|
		day: t.tm_mday
 | 
						|
		hour: t.tm_hour
 | 
						|
		minute: t.tm_min
 | 
						|
		second: t.tm_sec
 | 
						|
		uni: C.mktime(&t) 
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
pub fn (t Time) format_ss() string {
 | 
						|
	return '${t.year}-${t.month:02d}-${t.day:02d} ${t.hour:02d}:${t.minute:02d}:${t.second:02d}'
 | 
						|
}
 | 
						|
 | 
						|
pub fn (t Time) format() string {
 | 
						|
	return '${t.year}-${t.month:02d}-${t.day:02d} ${t.hour:02d}:${t.minute:02d}'
 | 
						|
}
 | 
						|
 | 
						|
const (
 | 
						|
	Months = 'JanFebMarAprMayJunJulAugSepOctNovDec'
 | 
						|
	Days = 'MonTueWedThuFriSatSun'
 | 
						|
)
 | 
						|
 | 
						|
pub fn (t Time) smonth() string {
 | 
						|
	i := t.month - 1
 | 
						|
	return Months.substr(i * 3, (i + 1) * 3)
 | 
						|
}
 | 
						|
 | 
						|
// 21:04
 | 
						|
pub fn (t Time) hhmm() string {
 | 
						|
	return '${t.hour:02d}:${t.minute:02d}'
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
fn (t Time) hhmm_tmp() string {
 | 
						|
	return '${t.hour:02d}:${t.minute:02d}'
 | 
						|
}
 | 
						|
*/
 | 
						|
 | 
						|
// 9:04pm
 | 
						|
pub fn (t Time) hhmm12() string {
 | 
						|
	mut am := 'am'
 | 
						|
	mut hour := t.hour
 | 
						|
	if t.hour > 11 {
 | 
						|
		am = 'pm'
 | 
						|
	}
 | 
						|
	if t.hour > 12 {
 | 
						|
		hour = hour - 12
 | 
						|
	}
 | 
						|
	if t.hour == 0 {
 | 
						|
		hour = 12
 | 
						|
	}
 | 
						|
	return '$hour:${t.minute:02d} $am'
 | 
						|
}
 | 
						|
 | 
						|
// 21:04:03
 | 
						|
pub fn (t Time) hhmmss() string {
 | 
						|
	return '${t.hour:02d}:${t.minute:02d}:${t.second:02d}'
 | 
						|
}
 | 
						|
 | 
						|
// 2012-01-05
 | 
						|
pub fn (t Time) ymmdd() string {
 | 
						|
	return '${t.year}-${t.month:02d}-${t.day:02d}'
 | 
						|
}
 | 
						|
 | 
						|
// Jul 3
 | 
						|
pub fn (t Time) md() string {
 | 
						|
	// jl := t.smonth()
 | 
						|
	s := '${t.smonth()} $t.day'
 | 
						|
	return s
 | 
						|
}
 | 
						|
 | 
						|
pub fn (t Time) clean() string {
 | 
						|
	nowe := time.now()
 | 
						|
	// if amtime {
 | 
						|
	// hm = t.Format("3:04 pm")
 | 
						|
	// }
 | 
						|
	// Today
 | 
						|
	if t.month == nowe.month && t.year == nowe.year && t.day == nowe.day {
 | 
						|
		return t.hhmm()
 | 
						|
	}
 | 
						|
	// This week
 | 
						|
	// if time.Since(t) < 24*7*time.Hour {
 | 
						|
	// return t.Weekday().String()[:3] + " " + hm
 | 
						|
	// }
 | 
						|
	// This year
 | 
						|
	if t.year == nowe.year {
 | 
						|
		return '${t.smonth()} ${t.day} ${t.hhmm()}'
 | 
						|
	}
 | 
						|
	return t.format()
 | 
						|
	// return fmt.Sprintf("%4d/%02d/%02d", t.Year(), t.Month(), t.Day()) + " " + hm
 | 
						|
}
 | 
						|
 | 
						|
pub fn (t Time) clean12() string {
 | 
						|
	nowe := time.now()
 | 
						|
	// if amtime {
 | 
						|
	// hm = t.Format("3:04 pm")
 | 
						|
	// }
 | 
						|
	// Today
 | 
						|
	if t.month == nowe.month && t.year == nowe.year && t.day == nowe.day {
 | 
						|
		return t.hhmm12()
 | 
						|
	}
 | 
						|
	// This week
 | 
						|
	// if time.Since(t) < 24*7*time.Hour {
 | 
						|
	// return t.Weekday().String()[:3] + " " + hm
 | 
						|
	// }
 | 
						|
	// This year
 | 
						|
	if t.year == nowe.year {
 | 
						|
		return '${t.smonth()} ${t.day} ${t.hhmm12()}'
 | 
						|
	}
 | 
						|
	return t.format()
 | 
						|
	// return fmt.Sprintf("%4d/%02d/%02d", t.Year(), t.Month(), t.Day()) + " " + hm
 | 
						|
}
 | 
						|
 | 
						|
// `parse` parses time in the following format: "2018-01-27 12:48:34"
 | 
						|
pub fn parse(s string) Time {
 | 
						|
	// println('parse="$s"')
 | 
						|
	pos := s.index(' ')
 | 
						|
	if pos <= 0 {
 | 
						|
		println('bad time format')
 | 
						|
		return now()
 | 
						|
	}
 | 
						|
	symd := s.left(pos)
 | 
						|
	ymd := symd.split('-')
 | 
						|
	if ymd.len != 3 {
 | 
						|
		println('bad time format')
 | 
						|
		return now()
 | 
						|
	}
 | 
						|
	shms := s.right(pos)
 | 
						|
	hms := shms.split(':')
 | 
						|
	hour := hms[0]
 | 
						|
	minute := hms[1]
 | 
						|
	second := hms[2]
 | 
						|
	// //////////
 | 
						|
	return new_time(Time {
 | 
						|
		year: ymd[0].int()
 | 
						|
		month: ymd[1].int()
 | 
						|
		day: ymd[2].int()
 | 
						|
		hour: hour.int()
 | 
						|
		minute: minute.int()
 | 
						|
		second: second.int()
 | 
						|
	})
 | 
						|
}
 | 
						|
 | 
						|
pub fn new_time(t Time) Time {
 | 
						|
	return{t | uni: t.calc_unix()}
 | 
						|
}
 | 
						|
 | 
						|
pub fn (t &Time) calc_unix() int {
 | 
						|
	if t.uni != 0  {
 | 
						|
		return t.uni
 | 
						|
	}
 | 
						|
	tt := C.tm{
 | 
						|
	tm_sec : t.second
 | 
						|
	tm_min : t.minute
 | 
						|
	tm_hour : t.hour
 | 
						|
	tm_mday : t.day
 | 
						|
	tm_mon : t.month-1
 | 
						|
	tm_year : t.year - 1900
 | 
						|
	}
 | 
						|
	return C.mktime(&tt)
 | 
						|
}
 | 
						|
 | 
						|
// TODO add(d time.Duration)
 | 
						|
pub fn (t Time) add_seconds(seconds int) Time {
 | 
						|
	return unix(t.uni + seconds)
 | 
						|
}
 | 
						|
 | 
						|
// TODO use time.Duration instead of seconds
 | 
						|
fn since(t Time) int {
 | 
						|
	return 0
 | 
						|
}
 | 
						|
 | 
						|
pub fn (t Time) relative() string {
 | 
						|
	now := time.now()
 | 
						|
	secs := now.uni - t.uni
 | 
						|
	if secs <= 30 {
 | 
						|
		// right now or in the future
 | 
						|
		// TODO handle time in the future
 | 
						|
		return 'now'
 | 
						|
	}
 | 
						|
	if secs < 60 {
 | 
						|
		return '1m'
 | 
						|
	}
 | 
						|
	if secs < 3600 {
 | 
						|
		return '${secs/60}m'
 | 
						|
	}
 | 
						|
	if secs < 3600 * 24 {
 | 
						|
		return '${secs/3600}h'
 | 
						|
	}
 | 
						|
	if secs < 3600 * 24 * 5 {
 | 
						|
		return '${secs/3600/24}d'
 | 
						|
	}
 | 
						|
	if secs > 3600 * 24 * 10000 {
 | 
						|
		return ''
 | 
						|
	}
 | 
						|
	return t.md()
 | 
						|
}
 | 
						|
 | 
						|
pub fn day_of_week(y, m, d int) int {
 | 
						|
	// TODO please no
 | 
						|
	//# return  (d += m < 3 ? y-- : y - 2, 23*m/9 + d + 4 + y/4- y/100 + y/400)%7;
 | 
						|
	return 0
 | 
						|
}
 | 
						|
 | 
						|
pub fn (t Time) day_of_week() int {
 | 
						|
	return day_of_week(t.year, t.month, t.day)
 | 
						|
}
 | 
						|
 | 
						|
// weekday_str() returns the current day in string (upto 3 characters)
 | 
						|
pub fn (t Time) weekday_str() string {
 | 
						|
	i := t.day_of_week() - 1
 | 
						|
	return Days.substr(i * 3, (i + 1) * 3)
 | 
						|
}
 | 
						|
 | 
						|
struct C.timeval  {
 | 
						|
	tv_sec int
 | 
						|
	tv_usec int 
 | 
						|
} 
 | 
						|
 | 
						|
// in ms
 | 
						|
pub fn ticks() i64 { 
 | 
						|
	$if windows { 
 | 
						|
		return C.GetTickCount()
 | 
						|
	} 
 | 
						|
	$else {
 | 
						|
		ts := C.timeval{} 
 | 
						|
		C.gettimeofday(&ts,0) 
 | 
						|
		return ts.tv_sec * 1000 + (ts.tv_usec / 1000) 
 | 
						|
	}
 | 
						|
 | 
						|
/* 
 | 
						|
	t := i64(C.mach_absolute_time())
 | 
						|
	# Nanoseconds elapsedNano = AbsoluteToNanoseconds( *(AbsoluteTime *) &t );
 | 
						|
	# return (double)(* (uint64_t *) &elapsedNano) / 1000000;
 | 
						|
*/ 
 | 
						|
}
 | 
						|
 | 
						|
pub fn sleep(seconds int) {
 | 
						|
	$if windows { 
 | 
						|
		C._sleep(seconds * 1000)
 | 
						|
	}
 | 
						|
	$else {
 | 
						|
		C.sleep(seconds)
 | 
						|
	} 
 | 
						|
}
 | 
						|
 | 
						|
pub fn usleep(n int) {
 | 
						|
$if windows { 
 | 
						|
	//C._usleep(n)
 | 
						|
}
 | 
						|
$else { 
 | 
						|
	C.usleep(n)
 | 
						|
} 
 | 
						|
}
 | 
						|
 | 
						|
pub fn sleep_ms(n int) {
 | 
						|
	$if windows { 
 | 
						|
		C.Sleep(n)
 | 
						|
	}
 | 
						|
	$else { 
 | 
						|
		C.usleep(n * 1000)
 | 
						|
	} 
 | 
						|
}
 | 
						|
 | 
						|
// Determine whether a year is a leap year.
 | 
						|
pub fn is_leap_year(year int) bool {
 | 
						|
	return (year%4 == 0) && (year%100 != 0 || year%400 == 0)
 | 
						|
}
 | 
						|
 | 
						|
// Returns number of days in month
 | 
						|
pub fn days_in_month(month, year int) ?int {
 | 
						|
	if month > 12 || month < 1 {
 | 
						|
		return error('Invalid month: $month')
 | 
						|
	}
 | 
						|
	extra :=	if month == 2 && is_leap_year(year) {1} else {0}
 | 
						|
	res := MonthDays[month-1] + extra 
 | 
						|
	return res 
 | 
						|
}
 |