v/vlib/sync/pool/pool.v

166 lines
5.1 KiB
V

module pool
import sync
import runtime
[trusted]
fn C.atomic_fetch_add_u32(voidptr, u32) u32
pub const (
no_result = voidptr(0)
)
pub struct PoolProcessor {
thread_cb voidptr
mut:
njobs int
items []voidptr
results []voidptr
ntask u32 // reading/writing to this should be atomic
waitgroup sync.WaitGroup
shared_context voidptr
thread_contexts []voidptr
}
pub type ThreadCB = fn (p &PoolProcessor, idx int, task_id int) voidptr
pub struct PoolProcessorConfig {
maxjobs int
callback ThreadCB
}
// new_pool_processor returns a new PoolProcessor instance.
// The parameters of new_pool_processor are:
// context.maxjobs: when 0 (the default), the PoolProcessor will use a
// number of threads, that is optimal for your system to process your items.
// context.callback: this should be a callback function, that each worker
// thread in the pool will run for each item.
// The callback function will receive as parameters:
// 1) the PoolProcessor instance, so it can call
// p.get_item<int>(idx) to get the actual item at index idx
// 2) idx - the index of the currently processed item
// 3) task_id - the index of the worker thread in which the callback
// function is running.
pub fn new_pool_processor(context PoolProcessorConfig) &PoolProcessor {
if isnil(context.callback) {
panic('You need to pass a valid callback to new_pool_processor.')
}
mut pool := PoolProcessor{
items: []
results: []
shared_context: voidptr(0)
thread_contexts: []
njobs: context.maxjobs
ntask: 0
thread_cb: voidptr(context.callback)
}
pool.waitgroup.init()
return &pool
}
// set_max_jobs gives you the ability to override the number
// of jobs *after* the PoolProcessor had been created already.
pub fn (mut pool PoolProcessor) set_max_jobs(njobs int) {
pool.njobs = njobs
}
// work_on_items receives a list of items of type T,
// then starts a work pool of pool.njobs threads, each running
// pool.thread_cb in a loop, untill all items in the list,
// are processed.
// When pool.njobs is 0, the number of jobs is determined
// by the number of available cores on the system.
// work_on_items returns *after* all threads finish.
// You can optionally call get_results after that.
pub fn (mut pool PoolProcessor) work_on_items<T>(items []T) {
pool.work_on_pointers(unsafe { items.pointers() })
}
pub fn (mut pool PoolProcessor) work_on_pointers(items []voidptr) {
mut njobs := runtime.nr_jobs()
if pool.njobs > 0 {
njobs = pool.njobs
}
pool.items = []
pool.results = []
pool.thread_contexts = []
pool.items << items
pool.results = []voidptr{len: (pool.items.len)}
pool.thread_contexts << []voidptr{len: (pool.items.len)}
pool.waitgroup.add(njobs)
for i := 0; i < njobs; i++ {
if njobs > 1 {
go process_in_thread(mut pool, i)
} else {
// do not run concurrently, just use the same thread:
process_in_thread(mut pool, i)
}
}
pool.waitgroup.wait()
}
// process_in_thread does the actual work of worker thread.
// It is a workaround for the current inability to pass a
// method in a callback.
fn process_in_thread(mut pool PoolProcessor, task_id int) {
cb := ThreadCB(pool.thread_cb)
ilen := pool.items.len
for {
idx := int(C.atomic_fetch_add_u32(&pool.ntask, 1))
if idx >= ilen {
break
}
pool.results[idx] = cb(pool, idx, task_id)
}
pool.waitgroup.done()
}
// get_item - called by the worker callback.
// Retrieves a type safe instance of the currently processed item
pub fn (pool &PoolProcessor) get_item<T>(idx int) T {
return *(&T(pool.items[idx]))
}
// get_result - called by the main thread to get a specific result.
// Retrieves a type safe instance of the produced result.
pub fn (pool &PoolProcessor) get_result<T>(idx int) T {
return *(&T(pool.results[idx]))
}
// get_results - get a list of type safe results in the main thread.
pub fn (pool &PoolProcessor) get_results<T>() []T {
mut res := []T{}
for i in 0 .. pool.results.len {
res << *(&T(pool.results[i]))
}
return res
}
// set_shared_context - can be called during the setup so that you can
// provide a context that is shared between all worker threads, like
// common options/settings.
pub fn (mut pool PoolProcessor) set_shared_context(context voidptr) {
pool.shared_context = context
}
// get_shared_context - can be called in each worker callback, to get
// the context set by pool.set_shared_context
pub fn (pool &PoolProcessor) get_shared_context() voidptr {
return pool.shared_context
}
// set_thread_context - can be called during the setup at the start of
// each worker callback, so that the worker callback can have some thread
// local storage area where it can write/read information that is private
// to the given thread, without worrying that it will get overwritten by
// another thread
pub fn (mut pool PoolProcessor) set_thread_context(idx int, context voidptr) {
pool.thread_contexts[idx] = context
}
// get_thread_context - returns a pointer, that was set with
// pool.set_thread_context . This pointer is private to each thread.
pub fn (pool &PoolProcessor) get_thread_context(idx int) voidptr {
return pool.thread_contexts[idx]
}