v/vlib/x/ttf/render_bmp.v

826 lines
21 KiB
V

module ttf
/**********************************************************************
*
* BMP render module utility functions
*
* Copyright (c) 2021 Dario Deledda. All rights reserved.
* Use of this source code is governed by an MIT license
* that can be found in the LICENSE file.
*
* Note:
*
* TODO:
* - manage text directions R to L
**********************************************************************/
import encoding.utf8
import math
import math.mathutil as mu
pub struct BitMap {
pub mut:
tf &TTF_File
buf &byte = 0 // pointer to the memory buffer
buf_size int // allocated buf size in bytes
width int = 1 // width of the buffer
height int = 1 // height of the buffer
bp int = 4 // byte per pixel of the buffer
bg_color u32 = 0xFFFFFF_00 // background RGBA format
color u32 = 0x000000_FF // RGBA format
scale f32 = 1.0 // internal usage!!
scale_x f32 = 1.0 // X scale of the single glyph
scale_y f32 = 1.0 // Y scale of the single glyph
angle f32 = 0.0 // angle of rotation of the bitmap
// spaces
space_cw f32 = 1.0 // width of the space glyph internal usage!!
space_mult f32 = f32(0.0) // 1.0/16.0 // space between letter, is a multiplier for a standrd space ax
// used only by internal text rendering!!
tr_matrix []f32 = [f32(1), 0, 0, 0, 1, 0, 0, 0, 0] // transformation matrix
ch_matrix []f32 = [f32(1), 0, 0, 0, 1, 0, 0, 0, 0] // character matrix
style Style = .filled // default syle
align Text_align = .left // default text align
justify bool // justify text flag, default deactivated
justify_fill_ratio f32 = 0.5 // justify fill ratio, if the ratio of the filled row is >= of this then justify the text
filler [][]int // filler buffer for the renderer
// flag to force font embedded metrics
use_font_metrics bool
}
/******************************************************************************
*
* Utility
*
******************************************************************************/
// clear clear the bitmap with 0 bytes
pub fn (mut bmp BitMap) clear() {
mut sz := bmp.width * bmp.height * bmp.bp
unsafe {
C.memset(bmp.buf, 0x00, sz)
}
}
// transform matrix applied to the text
fn (bmp &BitMap) trf_txt(p &Point) (int, int) {
return int(p.x * bmp.tr_matrix[0] + p.y * bmp.tr_matrix[3] + bmp.tr_matrix[6]), int(
p.x * bmp.tr_matrix[1] + p.y * bmp.tr_matrix[4] + bmp.tr_matrix[7])
}
// transform matrix applied to the char
fn (bmp &BitMap) trf_ch(p &Point) (int, int) {
return int(p.x * bmp.ch_matrix[0] + p.y * bmp.ch_matrix[3] + bmp.ch_matrix[6]), int(
p.x * bmp.ch_matrix[1] + p.y * bmp.ch_matrix[4] + bmp.ch_matrix[7])
}
// set draw postion in the buffer
pub fn (mut bmp BitMap) set_pos(x f32, y f32) {
bmp.tr_matrix[6] = x
bmp.tr_matrix[7] = y
}
// set the rotation angle in radiants
pub fn (mut bmp BitMap) set_rotation(a f32) {
bmp.tr_matrix[0] = f32(math.cos(a)) // 1
bmp.tr_matrix[1] = f32(-math.sin(a)) // 0
bmp.tr_matrix[3] = f32(math.sin(a)) // 0
bmp.tr_matrix[4] = f32(math.cos(a)) // 1
}
/******************************************************************************
*
* Filler functions
*
******************************************************************************/
pub fn (mut bmp BitMap) init_filler() {
h := bmp.height - bmp.filler.len
if h < 1 {
return
}
for _ in 0 .. h {
bmp.filler << []int{len: 4}
}
// dprintln("Init filler: ${bmp.filler.len} rows")
}
pub fn (mut bmp BitMap) clear_filler() {
for i in 0 .. bmp.height {
bmp.filler[i].clear()
}
}
pub fn (mut bmp BitMap) exec_filler() {
for y in 0 .. bmp.height {
if bmp.filler[y].len > 0 {
bmp.filler[y].sort()
if bmp.filler[y].len & 1 != 0 {
// dprintln("even line!! $y => ${bmp.filler[y]}")
continue
}
mut index := 0
for index < bmp.filler[y].len {
startx := bmp.filler[y][index] + 1
endx := bmp.filler[y][index + 1]
if startx >= endx {
index += 2
continue
}
for x in startx .. endx {
bmp.plot(x, y, bmp.color)
}
index += 2
}
}
}
}
pub fn (mut bmp BitMap) fline(in_x0 int, in_y0 int, in_x1 int, in_y1 int, c u32) {
mut x0 := f32(in_x0)
mut x1 := f32(in_x1)
mut y0 := f32(in_y0)
mut y1 := f32(in_y1)
mut tmp := f32(0)
// check bounds
if (in_x0 < 0 && in_x1 < 0) || (in_x0 > bmp.width && in_x1 > bmp.width) {
return
}
if y1 < y0 {
tmp = x0
x0 = x1
x1 = tmp
tmp = y0
y0 = y1
y1 = tmp
}
mut dx := x1 - x0
mut dy := y1 - y0
if dy == 0 {
if in_y0 >= 0 && in_y0 < bmp.filler.len {
if in_x0 <= in_x1 {
bmp.filler[in_y0] << in_x0
bmp.filler[in_y0] << in_x1
} else {
bmp.filler[in_y0] << in_x1
bmp.filler[in_y0] << in_x0
}
}
return
}
mut n := dx / dy
for y in 0 .. int(dy + 0.5) {
yd := int(y + y0)
x := n * y + x0
if x > bmp.width || yd >= bmp.filler.len {
break
}
if yd >= 0 && yd < bmp.filler.len {
bmp.filler[yd] << int(x + 0.5)
// bmp.plot(int(x+0.5), yd, bmp.color)
}
}
}
/******************************************************************************
*
* Draw functions
*
******************************************************************************/
[inline]
pub fn (mut bmp BitMap) plot(x int, y int, c u32) bool {
if x < 0 || x >= bmp.width || y < 0 || y >= bmp.height {
return false
}
mut index := (x + y * bmp.width) * bmp.bp
unsafe {
// bmp.buf[index]=0xFF
bmp.buf[index] = byte(c & 0xFF) // write only the alpha
}
/*
for count in 0..(bmp.bp) {
unsafe{
bmp.buf[index + count] = byte((c >> (bmp.bp - count - 1) * 8) & 0x0000_00FF)
}
}
*/
return true
}
/******************************************************************************
*
* smooth draw functions
*
******************************************************************************/
// aline draw an aliased line on the bitmap
pub fn (mut bmp BitMap) aline(in_x0 int, in_y0 int, in_x1 int, in_y1 int, c u32) {
// mut c1 := c
mut x0 := f32(in_x0)
mut x1 := f32(in_x1)
mut y0 := f32(in_y0)
mut y1 := f32(in_y1)
mut tmp := f32(0)
mut dx := x1 - x0
mut dy := y1 - y0
dist := f32(0.4)
if mu.abs(dx) > mu.abs(dy) {
if x1 < x0 {
tmp = x0
x0 = x1
x1 = tmp
tmp = y0
y0 = y1
y1 = tmp
}
dx = x1 - x0
dy = y1 - y0
x0 += 0.5
y0 += 0.5
m := dy / dx
mut x := x0
for x <= x1 + 0.5 {
y := m * (x - x0) + y0
e := 1 - mu.abs(y - 0.5 - int(y))
bmp.plot(int(x), int(y), color_multiply_alpha(c, e * 0.75))
ys1 := y + dist
if int(ys1) != int(y) {
v1 := mu.abs(ys1 - y) / dist * (1 - e)
bmp.plot(int(x), int(ys1), color_multiply_alpha(c, v1))
}
ys2 := y - dist
if int(ys2) != int(y) {
v2 := mu.abs(y - ys2) / dist * (1 - e)
bmp.plot(int(x), int(ys2), color_multiply_alpha(c, v2))
}
x += 1.0
}
} else {
if y1 < y0 {
tmp = x0
x0 = x1
x1 = tmp
tmp = y0
y0 = y1
y1 = tmp
}
dx = x1 - x0
dy = y1 - y0
x0 += 0.5
y0 += 0.5
n := dx / dy
mut y := y0
for y <= y1 + 0.5 {
x := n * (y - y0) + x0
e := f32(1 - mu.abs(x - 0.5 - int(x)))
bmp.plot(int(x), int(y), color_multiply_alpha(c, f32(e * 0.75)))
xs1 := x + dist
if int(xs1) != int(x) {
v1 := mu.abs(xs1 - x) / dist * (1 - e)
bmp.plot(int(xs1), int(y), color_multiply_alpha(c, f32(v1)))
}
xs2 := x - dist
if int(xs2) != int(x) {
v2 := mu.abs(x - xs1) / dist * (1 - e)
bmp.plot(int(xs2), int(y), color_multiply_alpha(c, f32(v2)))
}
y += 1.0
}
}
}
/******************************************************************************
*
* draw functions
*
******************************************************************************/
pub fn (mut bmp BitMap) line(in_x0 int, in_y0 int, in_x1 int, in_y1 int, c u32) {
// outline with aliased borders
if bmp.style == .outline_aliased {
bmp.aline(in_x0, in_y0, in_x1, in_y1, c)
return
}
// filled with aliased borders
else if bmp.style == .filled {
bmp.aline(in_x0, in_y0, in_x1, in_y1, c)
bmp.fline(in_x0, in_y0, in_x1, in_y1, c)
return
}
// only the filler is drawn
else if bmp.style == .raw {
bmp.fline(in_x0, in_y0, in_x1, in_y1, c)
return
}
// if we are here we are drawing an outlined border
x0 := int(in_x0)
x1 := int(in_x1)
y0 := int(in_y0)
y1 := int(in_y1)
// dprintln("line[$x0,$y0,$x1,$y1]")
mut x := x0
mut y := y0
dx := mu.abs(x1 - x0)
sx := if x0 < x1 { 1 } else { -1 }
dy := -mu.abs(y1 - y0)
sy := if y0 < y1 { 1 } else { -1 }
// verical line
if dx == 0 {
if y0 < y1 {
for yt in y0 .. y1 + 1 {
bmp.plot(x0, yt, c)
}
return
}
for yt in y1 .. y0 + 1 {
bmp.plot(x0, yt, c)
}
// horizontal line
return
} else if dy == 0 {
if x0 < x1 {
for xt in x0 .. x1 + 1 {
bmp.plot(xt, y0, c)
}
return
}
for xt in x1 .. x0 + 1 {
bmp.plot(xt, y0, c)
}
return
}
mut err := dx + dy // error value e_xy
for {
// bmp.plot(x, y, u32(0xFF00))
bmp.plot(x, y, c)
// dprintln("$x $y [$x0,$y0,$x1,$y1]")
if x == x1 && y == y1 {
break
}
e2 := 2 * err
if e2 >= dy { // e_xy+e_x > 0
err += dy
x += sx
}
if e2 <= dx { // e_xy+e_y < 0
err += dx
y += sy
}
}
}
pub fn (mut bmp BitMap) box(in_x0 int, in_y0 int, in_x1 int, in_y1 int, c u32) {
bmp.line(in_x0, in_y0, in_x1, in_y0, c)
bmp.line(in_x1, in_y0, in_x1, in_y1, c)
bmp.line(in_x0, in_y1, in_x1, in_y1, c)
bmp.line(in_x0, in_y0, in_x0, in_y1, c)
}
pub fn (mut bmp BitMap) quadratic(in_x0 int, in_y0 int, in_x1 int, in_y1 int, in_cx int, in_cy int, c u32) {
/*
x0 := int(in_x0 * bmp.scale)
x1 := int(in_x1 * bmp.scale)
y0 := int(in_y0 * bmp.scale)
y1 := int(in_y1 * bmp.scale)
cx := int(in_cx * bmp.scale)
cy := int(in_cy * bmp.scale)
*/
x0 := int(in_x0)
x1 := int(in_x1)
y0 := int(in_y0)
y1 := int(in_y1)
cx := int(in_cx)
cy := int(in_cy)
mut division := f64(1.0)
dx := mu.abs(x0 - x1)
dy := mu.abs(y0 - y1)
// if few pixel draw a simple line
// if dx == 0 && dy == 0 {
if dx <= 2 || dy <= 2 {
// bmp.plot(x0, y0, c)
bmp.line(x0, y0, x1, y1, c)
return
}
division = 1.0 / (f64(if dx > dy { dx } else { dy }))
// division = 0.1 // 10 division
// division = 0.25 // 4 division
// dprintln("div: $division")
/*
----- Bezier quadratic form -----
t = 0.5; // given example value, half length of the curve
x = (1 - t) * (1 - t) * p[0].x + 2 * (1 - t) * t * p[1].x + t * t * p[2].x;
y = (1 - t) * (1 - t) * p[0].y + 2 * (1 - t) * t * p[1].y + t * t * p[2].y;
---------------------------------
*/
mut x_old := x0
mut y_old := y0
mut t := 0.0
for t <= (1.0 + division / 2.0) {
s := 1.0 - t
x := s * s * x0 + 2.0 * s * t * cx + t * t * x1
y := s * s * y0 + 2.0 * s * t * cy + t * t * y1
xi := int(x + 0.5)
yi := int(y + 0.5)
// bmp.plot(xi, yi, c)
bmp.line(x_old, y_old, xi, yi, c)
x_old = xi
y_old = yi
t += division
}
}
/******************************************************************************
*
* TTF Query functions
*
******************************************************************************/
pub fn (mut bmp BitMap) get_chars_bbox(in_string string) []int {
mut res := []int{}
mut w := 0
mut space_cw, _ := bmp.tf.get_horizontal_metrics(u16(` `))
div_space_cw := int((f32(space_cw) * bmp.space_mult) * bmp.scale)
space_cw = int(space_cw * bmp.scale)
bmp.tf.reset_kern()
mut i := 0
for i < in_string.len {
mut char := u16(in_string[i])
// draw the space
if int(char) == 32 {
w += int(space_cw * bmp.space_cw)
i++
continue
}
// manage unicode chars like latin greek etc
c_len := ((0xe5000000 >> ((char >> 3) & 0x1e)) & 3) + 1
if c_len > 1 {
tmp_char := utf8.get_uchar(in_string, i)
// dprintln("tmp_char: ${tmp_char.hex()}")
char = u16(tmp_char)
}
c_index := bmp.tf.map_code(int(char))
// Glyph not found
if c_index == 0 {
w += int(space_cw * bmp.space_cw)
i += c_len
continue
}
ax, ay := bmp.tf.next_kern(c_index)
// dprintln("char_index: $c_index ax: $ax ay: $ay")
// cw, lsb := bmp.tf.get_horizontal_metrics(u16(char))
// dprintln("metrics: [${u16(char):c}] cw:$cw lsb:$lsb")
//----- Calc Glyph transformations -----
mut x0 := w + int(ax * bmp.scale)
mut y0 := 0 + int(ay * bmp.scale)
p := Point{x0, y0, false}
x1, y1 := bmp.trf_txt(p)
// init ch_matrix
bmp.ch_matrix[0] = bmp.tr_matrix[0] * bmp.scale * bmp.scale_x
bmp.ch_matrix[1] = bmp.tr_matrix[1] * bmp.scale * bmp.scale_x
bmp.ch_matrix[3] = bmp.tr_matrix[3] * -bmp.scale * bmp.scale_y
bmp.ch_matrix[4] = bmp.tr_matrix[4] * -bmp.scale * bmp.scale_y
bmp.ch_matrix[6] = int(x1)
bmp.ch_matrix[7] = int(y1)
// x_min, x_max, y_min, y_max := bmp.tf.read_glyph_dim(c_index)
x_min, x_max, _, _ := bmp.tf.read_glyph_dim(c_index)
//-----------------
width := int((mu.abs(x_max + x_min) + ax) * bmp.scale)
// width := int((cw+ax) * bmp.scale)
w += width + div_space_cw
h := int(mu.abs(int(bmp.tf.y_max - bmp.tf.y_min)) * bmp.scale)
res << w
res << h
i += c_len
}
return res
}
pub fn (mut bmp BitMap) get_bbox(in_string string) (int, int) {
mut w := 0
mut space_cw, _ := bmp.tf.get_horizontal_metrics(u16(` `))
div_space_cw := int((f32(space_cw) * bmp.space_mult) * bmp.scale)
space_cw = int(space_cw * bmp.scale)
bmp.tf.reset_kern()
mut i := 0
for i < in_string.len {
mut char := u16(in_string[i])
// draw the space
if int(char) == 32 {
w += int(space_cw * bmp.space_cw)
i++
continue
}
// manage unicode chars like latin greek etc
c_len := ((0xe5000000 >> ((char >> 3) & 0x1e)) & 3) + 1
if c_len > 1 {
tmp_char := utf8.get_uchar(in_string, i)
// dprintln("tmp_char: ${tmp_char.hex()}")
char = u16(tmp_char)
}
c_index := bmp.tf.map_code(int(char))
// Glyph not found
if c_index == 0 {
w += int(space_cw * bmp.space_cw)
i += c_len
continue
}
ax, ay := bmp.tf.next_kern(c_index)
// dprintln("char_index: $c_index ax: $ax ay: $ay")
// cw, lsb := bmp.tf.get_horizontal_metrics(u16(char))
// dprintln("metrics: [${u16(char):c}] cw:$cw lsb:$lsb")
//----- Calc Glyph transformations -----
mut x0 := w + int(ax * bmp.scale)
mut y0 := 0 + int(ay * bmp.scale)
p := Point{x0, y0, false}
x1, y1 := bmp.trf_txt(p)
// init ch_matrix
bmp.ch_matrix[0] = bmp.tr_matrix[0] * bmp.scale * bmp.scale_x
bmp.ch_matrix[1] = bmp.tr_matrix[1] * bmp.scale * bmp.scale_x
bmp.ch_matrix[3] = bmp.tr_matrix[3] * -bmp.scale * bmp.scale_y
bmp.ch_matrix[4] = bmp.tr_matrix[4] * -bmp.scale * bmp.scale_y
bmp.ch_matrix[6] = int(x1)
bmp.ch_matrix[7] = int(y1)
x_min, x_max, _, _ := bmp.tf.read_glyph_dim(c_index)
// x_min := 1
// x_max := 2
//-----------------
width := int((mu.abs(x_max + x_min) + ax) * bmp.scale)
// width := int((cw+ax) * bmp.scale)
w += width + div_space_cw
i += c_len
}
// dprintln("y_min: $bmp.tf.y_min y_max: $bmp.tf.y_max res: ${int((bmp.tf.y_max - bmp.tf.y_min)*buf.scale)} width: ${int( (cw) * buf.scale)}")
// buf.box(0,y_base - int((bmp.tf.y_min)*buf.scale), int( (x_max) * buf.scale), y_base-int((bmp.tf.y_max)*buf.scale), u32(0xFF00_0000) )
return w, int(mu.abs(int(bmp.tf.y_max - bmp.tf.y_min)) * bmp.scale)
}
/******************************************************************************
*
* TTF draw glyph
*
******************************************************************************/
fn (mut bmp BitMap) draw_notdef_glyph(in_x int, in_w int) {
mut p := Point{in_x, 0, false}
x1, y1 := bmp.trf_txt(p)
// init ch_matrix
bmp.ch_matrix[0] = bmp.tr_matrix[0] * bmp.scale * bmp.scale_x
bmp.ch_matrix[1] = bmp.tr_matrix[1] * bmp.scale * bmp.scale_x
bmp.ch_matrix[3] = bmp.tr_matrix[3] * -bmp.scale * bmp.scale_y
bmp.ch_matrix[4] = bmp.tr_matrix[4] * -bmp.scale * bmp.scale_y
bmp.ch_matrix[6] = int(x1)
bmp.ch_matrix[7] = int(y1)
x, y := bmp.trf_ch(p)
y_h := mu.abs(bmp.tf.y_max - bmp.tf.y_min) * bmp.scale * 0.5
bmp.box(int(x), int(y), int(x - in_w), int(y - y_h), bmp.color)
bmp.line(int(x), int(y), int(x - in_w), int(y - y_h), bmp.color)
bmp.line(int(x - in_w), int(y), int(x), int(y - y_h), bmp.color)
}
pub fn (mut bmp BitMap) draw_text(in_string string) (int, int) {
mut w := 0
mut space_cw, _ := bmp.tf.get_horizontal_metrics(u16(` `))
div_space_cw := int((f32(space_cw) * bmp.space_mult) * bmp.scale)
space_cw = int(space_cw * bmp.scale)
bmp.tf.reset_kern()
mut i := 0
for i < in_string.len {
mut char := u16(in_string[i])
// draw the space
if int(char) == 32 {
w += int(space_cw * bmp.space_cw)
i++
continue
}
// manage unicode chars like latin greek etc
c_len := ((0xe5000000 >> ((char >> 3) & 0x1e)) & 3) + 1
if c_len > 1 {
tmp_char := utf8.get_uchar(in_string, i)
// dprintln("tmp_char: ${tmp_char.hex()}")
char = u16(tmp_char)
}
c_index := bmp.tf.map_code(int(char))
// Glyph not found
if c_index == 0 {
bmp.draw_notdef_glyph(w, int(space_cw * bmp.space_cw))
w += int(space_cw * bmp.space_cw)
i += c_len
continue
}
ax, ay := bmp.tf.next_kern(c_index)
// dprintln("char_index: $c_index ax: $ax ay: $ay")
cw, _ := bmp.tf.get_horizontal_metrics(u16(char))
// cw, lsb := bmp.tf.get_horizontal_metrics(u16(char))
// dprintln("metrics: [${u16(char):c}] cw:$cw lsb:$lsb")
//----- Draw_Glyph transformations -----
mut x0 := w + int(ax * bmp.scale)
mut y0 := 0 + int(ay * bmp.scale)
p := Point{x0, y0, false}
x1, y1 := bmp.trf_txt(p)
// init ch_matrix
bmp.ch_matrix[0] = bmp.tr_matrix[0] * bmp.scale * bmp.scale_x
bmp.ch_matrix[1] = bmp.tr_matrix[1] * bmp.scale * bmp.scale_x
bmp.ch_matrix[3] = bmp.tr_matrix[3] * -bmp.scale * bmp.scale_y
bmp.ch_matrix[4] = bmp.tr_matrix[4] * -bmp.scale * bmp.scale_y
bmp.ch_matrix[6] = int(x1)
bmp.ch_matrix[7] = int(y1)
x_min, x_max := bmp.draw_glyph(c_index)
// x_min := 1
// x_max := 2
//-----------------
mut width := int((mu.abs(x_max + x_min) + ax) * bmp.scale)
if bmp.use_font_metrics {
width = int((cw + ax) * bmp.scale)
}
w += width + div_space_cw
i += c_len
}
// dprintln("y_min: $bmp.tf.y_min y_max: $bmp.tf.y_max res: ${int((bmp.tf.y_max - bmp.tf.y_min)*buf.scale)} width: ${int( (cw) * buf.scale)}")
// buf.box(0,y_base - int((bmp.tf.y_min)*buf.scale), int( (x_max) * buf.scale), y_base-int((bmp.tf.y_max)*buf.scale), u32(0xFF00_0000) )
return w, int(mu.abs(int(bmp.tf.y_max - bmp.tf.y_min)) * bmp.scale)
}
pub fn (mut bmp BitMap) draw_glyph(index u16) (int, int) {
glyph := bmp.tf.read_glyph(index)
if !glyph.valid_glyph {
return 0, 0
}
if bmp.style == .filled || bmp.style == .raw {
bmp.clear_filler()
}
mut s := 0 // status
mut c := 0 // contours count
mut contour_start := 0
mut x0 := 0
mut y0 := 0
color := bmp.color // u32(0xFFFF_FF00) // RGBA white
// color1 := u32(0xFF00_0000) // RGBA red
// color2 := u32(0x00FF_0000) // RGBA green
mut sp_x := 0
mut sp_y := 0
mut point := Point{}
for count, point_raw in glyph.points {
// dprintln("count: $count, state: $s pl:$glyph.points.len")
point.x = point_raw.x
point.y = point_raw.y
point.x, point.y = bmp.trf_ch(point)
point.on_curve = point_raw.on_curve
if s == 0 {
x0 = point.x
y0 = point.y
sp_x = x0
sp_y = y0
s = 1 // next state
continue
} else if s == 1 {
if point.on_curve {
bmp.line(x0, y0, point.x, point.y, color)
// bmp.aline(x0, y0, point.x, point.y, u32(0xFFFF0000))
x0 = point.x
y0 = point.y
} else {
s = 2
}
} else {
// dprintln("s==2")
mut prev := glyph.points[count - 1]
prev.x, prev.y = bmp.trf_ch(prev)
if point.on_curve {
// dprintln("HERE1")
// ctx.quadraticCurveTo(prev.x + x, prev.y + y,point.x + x, point.y + y);
// bmp.line(x0, y0, point.x + in_x, point.y + in_y, color1)
// bmp.quadratic(x0, y0, point.x + in_x, point.y + in_y, prev.x + in_x, prev.y + in_y, u32(0xa0a00000))
bmp.quadratic(x0, y0, point.x, point.y, prev.x, prev.y, color)
x0 = point.x
y0 = point.y
s = 1
} else {
// dprintln("HERE2")
// ctx.quadraticCurveTo(prev.x + x, prev.y + y,
// (prev.x + point.x) / 2 + x,
// (prev.y + point.y) / 2 + y);
// bmp.line(x0, y0, (prev.x + point.x)/2, (prev.y + point.y)/2, color2)
// bmp.quadratic(x0, y0, (prev.x + point.x)/2, (prev.y + point.y)/2, prev.x, prev.y, color2)
bmp.quadratic(x0, y0, (prev.x + point.x) / 2, (prev.y + point.y) / 2,
prev.x, prev.y, color)
x0 = (prev.x + point.x) / 2
y0 = (prev.y + point.y) / 2
}
}
if count == glyph.contour_ends[c] {
// dprintln("count == glyph.contour_ends[count]")
if s == 2 { // final point was off-curve. connect to start
mut start_point := glyph.points[contour_start]
start_point.x, start_point.y = bmp.trf_ch(start_point)
if point.on_curve {
// ctx.quadraticCurveTo(prev.x + x, prev.y + y,
// point.x + x, point.y + y);
// bmp.line(x0, y0, start_point.x + in_x, start_point.y + in_y, u32(0x00FF0000))
// start_point.x + in_x, start_point.y + in_y, u32(0xFF00FF00))
bmp.quadratic(x0, y0, start_point.x, start_point.y, start_point.x,
start_point.y, color)
} else {
// ctx.quadraticCurveTo(prev.x + x, prev.y + y,
// (prev.x + point.x) / 2 + x,
// (prev.y + point.y) / 2 + y);
// bmp.line(x0, y0, start_point.x, start_point.y, u32(0x00FF0000)
// u32(0xFF000000))
bmp.quadratic(x0, y0, start_point.x, start_point.y, (point.x + start_point.x) / 2,
(point.y + start_point.y) / 2, color)
}
} else {
// last point not in a curve
// bmp.line(point.x, point.y, sp_x, sp_y, u32(0x00FF0000))
bmp.line(point.x, point.y, sp_x, sp_y, color)
}
contour_start = count + 1
s = 0
c++
}
}
if bmp.style == .filled || bmp.style == .raw {
bmp.exec_filler()
}
x_min := glyph.x_min
x_max := glyph.x_max
return x_min, x_max
// return glyph.x_min, glyph.x_max
}