v/vlib/math/exp.v

193 lines
4.7 KiB
V
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

module math
import math.internal
const (
f64_max_exp = f64(1024)
f64_min_exp = f64(-1021)
threshold = 7.09782712893383973096e+02 // 0x40862E42FEFA39EF
ln2_x56 = 3.88162421113569373274e+01 // 0x4043687a9f1af2b1
ln2_halfx3 = 1.03972077083991796413e+00 // 0x3ff0a2b23f3bab73
ln2_half = 3.46573590279972654709e-01 // 0x3fd62e42fefa39ef
ln2hi = 6.93147180369123816490e-01 // 0x3fe62e42fee00000
ln2lo = 1.90821492927058770002e-10 // 0x3dea39ef35793c76
inv_ln2 = 1.44269504088896338700e+00 // 0x3ff71547652b82fe
// scaled coefficients related to expm1
expm1_q1 = -3.33333333333331316428e-02 // 0xBFA11111111110F4
expm1_q2 = 1.58730158725481460165e-03 // 0x3F5A01A019FE5585
expm1_q3 = -7.93650757867487942473e-05 // 0xBF14CE199EAADBB7
expm1_q4 = 4.00821782732936239552e-06 // 0x3ED0CFCA86E65239
expm1_q5 = -2.01099218183624371326e-07 // 0xBE8AFDB76E09C32D
)
// exp returns e**x, the base-e exponential of x.
//
// special cases are:
// exp(+inf) = +inf
// exp(nan) = nan
// Very large values overflow to 0 or +inf.
// Very small values underflow to 1.
pub fn exp(x f64) f64 {
log2e := 1.44269504088896338700e+00
overflow := 7.09782712893383973096e+02
underflow := -7.45133219101941108420e+02
near_zero := 1.0 / (1 << 28) // 2**-28
// special cases
if is_nan(x) || is_inf(x, 1) {
return x
}
if is_inf(x, -1) {
return 0.0
}
if x > overflow {
return inf(1)
}
if x < underflow {
return 0.0
}
if -near_zero < x && x < near_zero {
return 1.0 + x
}
// reduce; computed as r = hi - lo for extra precision.
mut k := 0
if x < 0 {
k = int(log2e * x - 0.5)
}
if x > 0 {
k = int(log2e * x + 0.5)
}
hi := x - f64(k) * math.ln2hi
lo := f64(k) * math.ln2lo
// compute
return expmulti(hi, lo, k)
}
// exp2 returns 2**x, the base-2 exponential of x.
//
// special cases are the same as exp.
pub fn exp2(x f64) f64 {
overflow := 1.0239999999999999e+03
underflow := -1.0740e+03
if is_nan(x) || is_inf(x, 1) {
return x
}
if is_inf(x, -1) {
return 0
}
if x > overflow {
return inf(1)
}
if x < underflow {
return 0
}
// argument reduction; x = r×lg(e) + k with |r| ≤ ln(2)/2.
// computed as r = hi - lo for extra precision.
mut k := 0
if x > 0 {
k = int(x + 0.5)
}
if x < 0 {
k = int(x - 0.5)
}
mut t := x - f64(k)
hi := t * math.ln2hi
lo := -t * math.ln2lo
// compute
return expmulti(hi, lo, k)
}
pub fn ldexp(frac f64, exp int) f64 {
return scalbn(frac, exp)
}
// frexp breaks f into a normalized fraction
// and an integral power of two.
// It returns frac and exp satisfying f == frac × 2**exp,
// with the absolute value of frac in the interval [½, 1).
//
// special cases are:
// frexp(±0) = ±0, 0
// frexp(±inf) = ±inf, 0
// frexp(nan) = nan, 0
// pub fn frexp(f f64) (f64, int) {
// mut y := f64_bits(x)
// ee := int((y >> 52) & 0x7ff)
// // special cases
// if ee == 0 {
// if x != 0.0 {
// x1p64 := f64_from_bits(0x43f0000000000000)
// z,e_ := frexp(x * x1p64)
// return z,e_ - 64
// }
// return x,0
// } else if ee == 0x7ff {
// return x,0
// }
// e_ := ee - 0x3fe
// y &= 0x800fffffffffffff
// y |= 0x3fe0000000000000
// return f64_from_bits(y),e_
pub fn frexp(x f64) (f64, int) {
mut y := f64_bits(x)
ee := int((y >> 52) & 0x7ff)
if ee == 0 {
if x != 0.0 {
x1p64 := f64_from_bits(u64(0x43f0000000000000))
z, e_ := frexp(x * x1p64)
return z, e_ - 64
}
return x, 0
} else if ee == 0x7ff {
return x, 0
}
e_ := ee - 0x3fe
y &= u64(0x800fffffffffffff)
y |= u64(0x3fe0000000000000)
return f64_from_bits(y), e_
}
// special cases are:
// expm1(+inf) = +inf
// expm1(-inf) = -1
// expm1(nan) = nan
pub fn expm1(x f64) f64 {
if is_inf(x, 1) || is_nan(x) {
return x
}
if is_inf(x, -1) {
return f64(-1)
}
// FIXME: this should be improved
if abs(x) < ln2 { // Compute the taylor series S = x + (1/2!) x^2 + (1/3!) x^3 + ...
mut i := 1.0
mut sum := x
mut term := x / 1.0
i++
term *= x / f64(i)
sum += term
for abs(term) > abs(sum) * internal.f64_epsilon {
i++
term *= x / f64(i)
sum += term
}
return sum
} else {
return exp(x) - 1
}
}
// exp1 returns e**r × 2**k where r = hi - lo and |r| ≤ ln(2)/2.
fn expmulti(hi f64, lo f64, k int) f64 {
exp_p1 := 1.66666666666666657415e-01 // 0x3FC55555; 0x55555555
exp_p2 := -2.77777777770155933842e-03 // 0xBF66C16C; 0x16BEBD93
exp_p3 := 6.61375632143793436117e-05 // 0x3F11566A; 0xAF25DE2C
exp_p4 := -1.65339022054652515390e-06 // 0xBEBBBD41; 0xC5D26BF1
exp_p5 := 4.13813679705723846039e-08 // 0x3E663769; 0x72BEA4D0
r := hi - lo
t := r * r
c := r - t * (exp_p1 + t * (exp_p2 + t * (exp_p3 + t * (exp_p4 + t * exp_p5))))
y := 1 - ((lo - (r * c) / (2 - c)) - hi)
// TODO(rsc): make sure ldexp can handle boundary k
return ldexp(y, k)
}