485 lines
11 KiB
V
485 lines
11 KiB
V
module stats
|
|
|
|
import math
|
|
|
|
// freq calculates the Measure of Occurance
|
|
// Frequency of a given number
|
|
// Based on
|
|
// https://www.mathsisfun.com/data/frequency-distribution.html
|
|
pub fn freq<T>(data []T, val T) int {
|
|
if data.len == 0 {
|
|
return 0
|
|
}
|
|
mut count := 0
|
|
for v in data {
|
|
if v == val {
|
|
count++
|
|
}
|
|
}
|
|
return count
|
|
}
|
|
|
|
// mean calculates the average
|
|
// of the given input array, sum(data)/data.len
|
|
// Based on
|
|
// https://www.mathsisfun.com/data/central-measures.html
|
|
pub fn mean<T>(data []T) T {
|
|
if data.len == 0 {
|
|
return T(0)
|
|
}
|
|
mut sum := T(0)
|
|
for v in data {
|
|
sum += v
|
|
}
|
|
return sum / T(data.len)
|
|
}
|
|
|
|
// geometric_mean calculates the central tendency
|
|
// of the given input array, product(data)**1/data.len
|
|
// Based on
|
|
// https://www.mathsisfun.com/numbers/geometric-mean.html
|
|
pub fn geometric_mean<T>(data []T) T {
|
|
if data.len == 0 {
|
|
return T(0)
|
|
}
|
|
mut sum := 1.0
|
|
for v in data {
|
|
sum *= v
|
|
}
|
|
return math.pow(sum, 1.0 / T(data.len))
|
|
}
|
|
|
|
// harmonic_mean calculates the reciprocal of the average of reciprocals
|
|
// of the given input array
|
|
// Based on
|
|
// https://www.mathsisfun.com/numbers/harmonic-mean.html
|
|
pub fn harmonic_mean<T>(data []T) T {
|
|
if data.len == 0 {
|
|
return T(0)
|
|
}
|
|
mut sum := T(0)
|
|
for v in data {
|
|
sum += 1.0 / v
|
|
}
|
|
return T(data.len) / sum
|
|
}
|
|
|
|
// median returns the middlemost value of the given input array ( input array is assumed to be sorted )
|
|
// Based on
|
|
// https://www.mathsisfun.com/data/central-measures.html
|
|
pub fn median<T>(sorted_data []T) T {
|
|
if sorted_data.len == 0 {
|
|
return T(0)
|
|
}
|
|
if sorted_data.len % 2 == 0 {
|
|
mid := (sorted_data.len / 2) - 1
|
|
return (sorted_data[mid] + sorted_data[mid + 1]) / T(2)
|
|
} else {
|
|
return sorted_data[((sorted_data.len - 1) / 2)]
|
|
}
|
|
}
|
|
|
|
// mode calculates the highest occuring value of the given input array
|
|
// Based on
|
|
// https://www.mathsisfun.com/data/central-measures.html
|
|
pub fn mode<T>(data []T) T {
|
|
if data.len == 0 {
|
|
return T(0)
|
|
}
|
|
mut freqs := []int{}
|
|
for v in data {
|
|
freqs << freq(data, v)
|
|
}
|
|
mut max := 0
|
|
for i := 0; i < freqs.len; i++ {
|
|
if freqs[i] > freqs[max] {
|
|
max = i
|
|
}
|
|
}
|
|
return data[max]
|
|
}
|
|
|
|
// rms, Root Mean Square, calculates the sqrt of the mean of the squares of the given input array
|
|
// Based on
|
|
// https://en.wikipedia.org/wiki/Root_mean_square
|
|
pub fn rms<T>(data []T) T {
|
|
if data.len == 0 {
|
|
return T(0)
|
|
}
|
|
mut sum := T(0)
|
|
for v in data {
|
|
sum += math.pow(v, 2)
|
|
}
|
|
return math.sqrt(sum / T(data.len))
|
|
}
|
|
|
|
// population_variance is the Measure of Dispersion / Spread
|
|
// of the given input array
|
|
// Based on
|
|
// https://www.mathsisfun.com/data/standard-deviation.html
|
|
[inline]
|
|
pub fn population_variance<T>(data []T) T {
|
|
if data.len == 0 {
|
|
return T(0)
|
|
}
|
|
data_mean := mean<T>(data)
|
|
return population_variance_mean<T>(data, data_mean)
|
|
}
|
|
|
|
// population_variance_mean is the Measure of Dispersion / Spread
|
|
// of the given input array, with the provided mean
|
|
// Based on
|
|
// https://www.mathsisfun.com/data/standard-deviation.html
|
|
pub fn population_variance_mean<T>(data []T, mean T) T {
|
|
if data.len == 0 {
|
|
return T(0)
|
|
}
|
|
mut sum := T(0)
|
|
for v in data {
|
|
sum += (v - mean) * (v - mean)
|
|
}
|
|
return sum / T(data.len)
|
|
}
|
|
|
|
// sample_variance calculates the spread of dataset around the mean
|
|
// Based on
|
|
// https://www.mathsisfun.com/data/standard-deviation.html
|
|
[inline]
|
|
pub fn sample_variance<T>(data []T) T {
|
|
if data.len == 0 {
|
|
return T(0)
|
|
}
|
|
data_mean := mean<T>(data)
|
|
return sample_variance_mean<T>(data, data_mean)
|
|
}
|
|
|
|
// sample_variance calculates the spread of dataset around the provided mean
|
|
// Based on
|
|
// https://www.mathsisfun.com/data/standard-deviation.html
|
|
pub fn sample_variance_mean<T>(data []T, mean T) T {
|
|
if data.len == 0 {
|
|
return T(0)
|
|
}
|
|
mut sum := T(0)
|
|
for v in data {
|
|
sum += (v - mean) * (v - mean)
|
|
}
|
|
return sum / T(data.len - 1)
|
|
}
|
|
|
|
// population_stddev calculates how spread out the dataset is
|
|
// Based on
|
|
// https://www.mathsisfun.com/data/standard-deviation.html
|
|
[inline]
|
|
pub fn population_stddev<T>(data []T) T {
|
|
if data.len == 0 {
|
|
return T(0)
|
|
}
|
|
return math.sqrt(population_variance<T>(data))
|
|
}
|
|
|
|
// population_stddev_mean calculates how spread out the dataset is, with the provide mean
|
|
// Based on
|
|
// https://www.mathsisfun.com/data/standard-deviation.html
|
|
[inline]
|
|
pub fn population_stddev_mean<T>(data []T, mean T) T {
|
|
if data.len == 0 {
|
|
return T(0)
|
|
}
|
|
return T(math.sqrt(f64(population_variance_mean<T>(data, mean))))
|
|
}
|
|
|
|
// Measure of Dispersion / Spread
|
|
// Sample Standard Deviation of the given input array
|
|
// Based on
|
|
// https://www.mathsisfun.com/data/standard-deviation.html
|
|
[inline]
|
|
pub fn sample_stddev<T>(data []T) T {
|
|
if data.len == 0 {
|
|
return T(0)
|
|
}
|
|
return T(math.sqrt(f64(sample_variance<T>(data))))
|
|
}
|
|
|
|
// Measure of Dispersion / Spread
|
|
// Sample Standard Deviation of the given input array
|
|
// Based on
|
|
// https://www.mathsisfun.com/data/standard-deviation.html
|
|
[inline]
|
|
pub fn sample_stddev_mean<T>(data []T, mean T) T {
|
|
if data.len == 0 {
|
|
return T(0)
|
|
}
|
|
return T(math.sqrt(f64(sample_variance_mean<T>(data, mean))))
|
|
}
|
|
|
|
// absdev calculates the average distance between each data point and the mean
|
|
// Based on
|
|
// https://en.wikipedia.org/wiki/Average_absolute_deviation
|
|
[inline]
|
|
pub fn absdev<T>(data []T) T {
|
|
if data.len == 0 {
|
|
return T(0)
|
|
}
|
|
data_mean := mean<T>(data)
|
|
return absdev_mean<T>(data, data_mean)
|
|
}
|
|
|
|
// absdev_mean calculates the average distance between each data point and the provided mean
|
|
// Based on
|
|
// https://en.wikipedia.org/wiki/Average_absolute_deviation
|
|
pub fn absdev_mean<T>(data []T, mean T) T {
|
|
if data.len == 0 {
|
|
return T(0)
|
|
}
|
|
mut sum := T(0)
|
|
for v in data {
|
|
sum += math.abs(v - mean)
|
|
}
|
|
return sum / T(data.len)
|
|
}
|
|
|
|
// tts, Sum of squares, calculates the sum over all squared differences between values and overall mean
|
|
[inline]
|
|
pub fn tss<T>(data []T) T {
|
|
if data.len == 0 {
|
|
return T(0)
|
|
}
|
|
data_mean := mean<T>(data)
|
|
return tss_mean<T>(data, data_mean)
|
|
}
|
|
|
|
// tts_mean, Sum of squares, calculates the sum over all squared differences between values and the provided mean
|
|
pub fn tss_mean<T>(data []T, mean T) T {
|
|
if data.len == 0 {
|
|
return T(0)
|
|
}
|
|
mut tss := T(0)
|
|
for v in data {
|
|
tss += (v - mean) * (v - mean)
|
|
}
|
|
return tss
|
|
}
|
|
|
|
// min finds the minimum value from the dataset
|
|
pub fn min<T>(data []T) T {
|
|
if data.len == 0 {
|
|
return T(0)
|
|
}
|
|
mut min := data[0]
|
|
for v in data {
|
|
if v < min {
|
|
min = v
|
|
}
|
|
}
|
|
return min
|
|
}
|
|
|
|
// max finds the maximum value from the dataset
|
|
pub fn max<T>(data []T) T {
|
|
if data.len == 0 {
|
|
return T(0)
|
|
}
|
|
mut max := data[0]
|
|
for v in data {
|
|
if v > max {
|
|
max = v
|
|
}
|
|
}
|
|
return max
|
|
}
|
|
|
|
// minmax finds the minimum and maximum value from the dataset
|
|
pub fn minmax<T>(data []T) (T, T) {
|
|
if data.len == 0 {
|
|
return T(0), T(0)
|
|
}
|
|
mut max := data[0]
|
|
mut min := data[0]
|
|
for v in data[1..] {
|
|
if v > max {
|
|
max = v
|
|
}
|
|
if v < min {
|
|
min = v
|
|
}
|
|
}
|
|
return min, max
|
|
}
|
|
|
|
// min_index finds the first index of the minimum value
|
|
pub fn min_index<T>(data []T) int {
|
|
if data.len == 0 {
|
|
return 0
|
|
}
|
|
mut min := data[0]
|
|
mut min_index := 0
|
|
for i, v in data {
|
|
if v < min {
|
|
min = v
|
|
min_index = i
|
|
}
|
|
}
|
|
return min_index
|
|
}
|
|
|
|
// max_index finds the first index of the maximum value
|
|
pub fn max_index<T>(data []T) int {
|
|
if data.len == 0 {
|
|
return 0
|
|
}
|
|
mut max := data[0]
|
|
mut max_index := 0
|
|
for i, v in data {
|
|
if v > max {
|
|
max = v
|
|
max_index = i
|
|
}
|
|
}
|
|
return max_index
|
|
}
|
|
|
|
// minmax_index finds the first index of the minimum and maximum value
|
|
pub fn minmax_index<T>(data []T) (int, int) {
|
|
if data.len == 0 {
|
|
return 0, 0
|
|
}
|
|
mut min := data[0]
|
|
mut max := data[0]
|
|
mut min_index := 0
|
|
mut max_index := 0
|
|
for i, v in data {
|
|
if v < min {
|
|
min = v
|
|
min_index = i
|
|
}
|
|
if v > max {
|
|
max = v
|
|
max_index = i
|
|
}
|
|
}
|
|
return min_index, max_index
|
|
}
|
|
|
|
// range calculates the difference between the min and max
|
|
// Range ( Maximum - Minimum ) of the given input array
|
|
// Based on
|
|
// https://www.mathsisfun.com/data/range.html
|
|
pub fn range<T>(data []T) T {
|
|
if data.len == 0 {
|
|
return T(0)
|
|
}
|
|
min, max := minmax<T>(data)
|
|
return max - min
|
|
}
|
|
|
|
// covariance calculates directional association between datasets
|
|
// positive value denotes variables move in same direction and negative denotes variables move in opposite directions
|
|
[inline]
|
|
pub fn covariance<T>(data1 []T, data2 []T) T {
|
|
mean1 := mean<T>(data1)
|
|
mean2 := mean<T>(data2)
|
|
return covariance_mean<T>(data1, data2, mean1, mean2)
|
|
}
|
|
|
|
// covariance_mean computes the covariance of a dataset with means provided
|
|
// the recurrence relation
|
|
pub fn covariance_mean<T>(data1 []T, data2 []T, mean1 T, mean2 T) T {
|
|
n := int(math.min(data1.len, data2.len))
|
|
if n == 0 {
|
|
return T(0)
|
|
}
|
|
mut covariance := T(0)
|
|
for i in 0 .. n {
|
|
delta1 := data1[i] - mean1
|
|
delta2 := data2[i] - mean2
|
|
covariance += (delta1 * delta2 - covariance) / (T(i) + 1.0)
|
|
}
|
|
return covariance
|
|
}
|
|
|
|
// lag1_autocorrelation_mean calculates the correlation between values that are one time period apart
|
|
// of a dataset, based on the mean
|
|
[inline]
|
|
pub fn lag1_autocorrelation<T>(data []T) T {
|
|
data_mean := mean<T>(data)
|
|
return lag1_autocorrelation_mean<T>(data, data_mean)
|
|
}
|
|
|
|
// lag1_autocorrelation_mean calculates the correlation between values that are one time period apart
|
|
// of a dataset, using
|
|
// the recurrence relation
|
|
pub fn lag1_autocorrelation_mean<T>(data []T, mean T) T {
|
|
if data.len == 0 {
|
|
return T(0)
|
|
}
|
|
mut q := T(0)
|
|
mut v := (data[0] * mean) - (data[0] * mean)
|
|
for i := 1; i < data.len; i++ {
|
|
delta0 := data[i - 1] - mean
|
|
delta1 := data[i] - mean
|
|
q += (delta0 * delta1 - q) / (T(i) + 1.0)
|
|
v += (delta1 * delta1 - v) / (T(i) + 1.0)
|
|
}
|
|
return q / v
|
|
}
|
|
|
|
// kurtosis calculates the measure of the 'tailedness' of the data by finding mean and standard of deviation
|
|
[inline]
|
|
pub fn kurtosis<T>(data []T) T {
|
|
data_mean := mean<T>(data)
|
|
sd := population_stddev_mean<T>(data, data_mean)
|
|
return kurtosis_mean_stddev<T>(data, data_mean, sd)
|
|
}
|
|
|
|
// kurtosis_mean_stddev calculates the measure of the 'tailedness' of the data
|
|
// using the fourth moment the deviations, normalized by the sd
|
|
pub fn kurtosis_mean_stddev<T>(data []T, mean T, sd T) T {
|
|
mut avg := T(0) // find the fourth moment the deviations, normalized by the sd
|
|
/*
|
|
we use a recurrence relation to stably update a running value so
|
|
* there aren't any large sums that can overflow
|
|
*/
|
|
for i, v in data {
|
|
x := (v - mean) / sd
|
|
avg += (x * x * x * x - avg) / (T(i) + 1.0)
|
|
}
|
|
return avg - T(3.0)
|
|
}
|
|
|
|
// skew calculates the mean and standard of deviation to find the skew from the data
|
|
[inline]
|
|
pub fn skew<T>(data []T) T {
|
|
data_mean := mean<T>(data)
|
|
sd := population_stddev_mean<T>(data, data_mean)
|
|
return skew_mean_stddev<T>(data, data_mean, sd)
|
|
}
|
|
|
|
// skew_mean_stddev calculates the skewness of data
|
|
pub fn skew_mean_stddev<T>(data []T, mean T, sd T) T {
|
|
mut skew := T(0) // find the sum of the cubed deviations, normalized by the sd.
|
|
/*
|
|
we use a recurrence relation to stably update a running value so
|
|
* there aren't any large sums that can overflow
|
|
*/
|
|
for i, v in data {
|
|
x := (v - mean) / sd
|
|
skew += (x * x * x - skew) / (T(i) + 1.0)
|
|
}
|
|
return skew
|
|
}
|
|
|
|
pub fn quantile<T>(sorted_data []T, f T) T {
|
|
if sorted_data.len == 0 {
|
|
return T(0)
|
|
}
|
|
index := f * (T(sorted_data.len) - 1.0)
|
|
lhs := int(index)
|
|
delta := index - T(lhs)
|
|
return if lhs == sorted_data.len - 1 {
|
|
sorted_data[lhs]
|
|
} else {
|
|
(1.0 - delta) * sorted_data[lhs] + delta * sorted_data[(lhs + 1)]
|
|
}
|
|
}
|