512 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			512 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			V
		
	
	
// Copyright (c) 2019-2022 Alexander Medvednikov. All rights reserved.
 | 
						||
// Use of this source code is governed by an MIT license
 | 
						||
// that can be found in the LICENSE file.
 | 
						||
module bits
 | 
						||
 | 
						||
const (
 | 
						||
	// See http://supertech.csail.mit.edu/papers/debruijn.pdf
 | 
						||
	de_bruijn32    = u32(0x077CB531)
 | 
						||
	de_bruijn32tab = [u8(0), 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 31, 27, 13,
 | 
						||
		23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9]
 | 
						||
	de_bruijn64    = u64(0x03f79d71b4ca8b09)
 | 
						||
	de_bruijn64tab = [u8(0), 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4, 62, 47, 59,
 | 
						||
		36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5, 63, 55, 48, 27, 60, 41, 37, 16, 46,
 | 
						||
		35, 44, 21, 52, 32, 23, 11, 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6]
 | 
						||
)
 | 
						||
 | 
						||
const (
 | 
						||
	m0 = u64(0x5555555555555555) // 01010101 ...
 | 
						||
	m1 = u64(0x3333333333333333) // 00110011 ...
 | 
						||
	m2 = u64(0x0f0f0f0f0f0f0f0f) // 00001111 ...
 | 
						||
	m3 = u64(0x00ff00ff00ff00ff) // etc.
 | 
						||
	m4 = u64(0x0000ffff0000ffff)
 | 
						||
)
 | 
						||
 | 
						||
const (
 | 
						||
	// save importing math mod just for these
 | 
						||
	max_u32 = u32(4294967295)
 | 
						||
	max_u64 = u64(18446744073709551615)
 | 
						||
)
 | 
						||
 | 
						||
// --- LeadingZeros ---
 | 
						||
// leading_zeros_8 returns the number of leading zero bits in x; the result is 8 for x == 0.
 | 
						||
pub fn leading_zeros_8(x u8) int {
 | 
						||
	return 8 - len_8(x)
 | 
						||
}
 | 
						||
 | 
						||
// leading_zeros_16 returns the number of leading zero bits in x; the result is 16 for x == 0.
 | 
						||
pub fn leading_zeros_16(x u16) int {
 | 
						||
	return 16 - len_16(x)
 | 
						||
}
 | 
						||
 | 
						||
// leading_zeros_32 returns the number of leading zero bits in x; the result is 32 for x == 0.
 | 
						||
pub fn leading_zeros_32(x u32) int {
 | 
						||
	return 32 - len_32(x)
 | 
						||
}
 | 
						||
 | 
						||
// leading_zeros_64 returns the number of leading zero bits in x; the result is 64 for x == 0.
 | 
						||
pub fn leading_zeros_64(x u64) int {
 | 
						||
	return 64 - len_64(x)
 | 
						||
}
 | 
						||
 | 
						||
// --- TrailingZeros ---
 | 
						||
// trailing_zeros_8 returns the number of trailing zero bits in x; the result is 8 for x == 0.
 | 
						||
pub fn trailing_zeros_8(x u8) int {
 | 
						||
	return int(ntz_8_tab[x])
 | 
						||
}
 | 
						||
 | 
						||
// trailing_zeros_16 returns the number of trailing zero bits in x; the result is 16 for x == 0.
 | 
						||
pub fn trailing_zeros_16(x u16) int {
 | 
						||
	if x == 0 {
 | 
						||
		return 16
 | 
						||
	}
 | 
						||
	// see comment in trailing_zeros_64
 | 
						||
	return int(bits.de_bruijn32tab[u32(x & -x) * bits.de_bruijn32 >> (32 - 5)])
 | 
						||
}
 | 
						||
 | 
						||
// trailing_zeros_32 returns the number of trailing zero bits in x; the result is 32 for x == 0.
 | 
						||
pub fn trailing_zeros_32(x u32) int {
 | 
						||
	if x == 0 {
 | 
						||
		return 32
 | 
						||
	}
 | 
						||
	// see comment in trailing_zeros_64
 | 
						||
	return int(bits.de_bruijn32tab[(x & -x) * bits.de_bruijn32 >> (32 - 5)])
 | 
						||
}
 | 
						||
 | 
						||
// trailing_zeros_64 returns the number of trailing zero bits in x; the result is 64 for x == 0.
 | 
						||
pub fn trailing_zeros_64(x u64) int {
 | 
						||
	if x == 0 {
 | 
						||
		return 64
 | 
						||
	}
 | 
						||
	// If popcount is fast, replace code below with return popcount(^x & (x - 1)).
 | 
						||
	//
 | 
						||
	// x & -x leaves only the right-most bit set in the word. Let k be the
 | 
						||
	// index of that bit. Since only a single bit is set, the value is two
 | 
						||
	// to the power of k. Multiplying by a power of two is equivalent to
 | 
						||
	// left shifting, in this case by k bits. The de Bruijn (64 bit) constant
 | 
						||
	// is such that all six bit, consecutive substrings are distinct.
 | 
						||
	// Therefore, if we have a left shifted version of this constant we can
 | 
						||
	// find by how many bits it was shifted by looking at which six bit
 | 
						||
	// substring ended up at the top of the word.
 | 
						||
	// (Knuth, volume 4, section 7.3.1)
 | 
						||
	return int(bits.de_bruijn64tab[(x & -x) * bits.de_bruijn64 >> (64 - 6)])
 | 
						||
}
 | 
						||
 | 
						||
// --- OnesCount ---
 | 
						||
// ones_count_8 returns the number of one bits ("population count") in x.
 | 
						||
pub fn ones_count_8(x u8) int {
 | 
						||
	return int(pop_8_tab[x])
 | 
						||
}
 | 
						||
 | 
						||
// ones_count_16 returns the number of one bits ("population count") in x.
 | 
						||
pub fn ones_count_16(x u16) int {
 | 
						||
	return int(pop_8_tab[x >> 8] + pop_8_tab[x & u16(0xff)])
 | 
						||
}
 | 
						||
 | 
						||
// ones_count_32 returns the number of one bits ("population count") in x.
 | 
						||
pub fn ones_count_32(x u32) int {
 | 
						||
	return int(pop_8_tab[x >> 24] + pop_8_tab[x >> 16 & 0xff] + pop_8_tab[x >> 8 & 0xff] +
 | 
						||
		pop_8_tab[x & u32(0xff)])
 | 
						||
}
 | 
						||
 | 
						||
// ones_count_64 returns the number of one bits ("population count") in x.
 | 
						||
pub fn ones_count_64(x u64) int {
 | 
						||
	// Implementation: Parallel summing of adjacent bits.
 | 
						||
	// See "Hacker's Delight", Chap. 5: Counting Bits.
 | 
						||
	// The following pattern shows the general approach:
 | 
						||
	//
 | 
						||
	// x = x>>1&(m0&m) + x&(m0&m)
 | 
						||
	// x = x>>2&(m1&m) + x&(m1&m)
 | 
						||
	// x = x>>4&(m2&m) + x&(m2&m)
 | 
						||
	// x = x>>8&(m3&m) + x&(m3&m)
 | 
						||
	// x = x>>16&(m4&m) + x&(m4&m)
 | 
						||
	// x = x>>32&(m5&m) + x&(m5&m)
 | 
						||
	// return int(x)
 | 
						||
	//
 | 
						||
	// Masking (& operations) can be left away when there's no
 | 
						||
	// danger that a field's sum will carry over into the next
 | 
						||
	// field: Since the result cannot be > 64, 8 bits is enough
 | 
						||
	// and we can ignore the masks for the shifts by 8 and up.
 | 
						||
	// Per "Hacker's Delight", the first line can be simplified
 | 
						||
	// more, but it saves at best one instruction, so we leave
 | 
						||
	// it alone for clarity.
 | 
						||
	mut y := (x >> u64(1) & (bits.m0 & bits.max_u64)) + (x & (bits.m0 & bits.max_u64))
 | 
						||
	y = (y >> u64(2) & (bits.m1 & bits.max_u64)) + (y & (bits.m1 & bits.max_u64))
 | 
						||
	y = ((y >> 4) + y) & (bits.m2 & bits.max_u64)
 | 
						||
	y += y >> 8
 | 
						||
	y += y >> 16
 | 
						||
	y += y >> 32
 | 
						||
	return int(y) & ((1 << 7) - 1)
 | 
						||
}
 | 
						||
 | 
						||
// --- RotateLeft ---
 | 
						||
// rotate_left_8 returns the value of x rotated left by (k mod 8) bits.
 | 
						||
// To rotate x right by k bits, call rotate_left_8(x, -k).
 | 
						||
//
 | 
						||
// This function's execution time does not depend on the inputs.
 | 
						||
[inline]
 | 
						||
pub fn rotate_left_8(x u8, k int) u8 {
 | 
						||
	n := u8(8)
 | 
						||
	s := u8(k) & (n - u8(1))
 | 
						||
	return (x << s) | (x >> (n - s))
 | 
						||
}
 | 
						||
 | 
						||
// rotate_left_16 returns the value of x rotated left by (k mod 16) bits.
 | 
						||
// To rotate x right by k bits, call rotate_left_16(x, -k).
 | 
						||
//
 | 
						||
// This function's execution time does not depend on the inputs.
 | 
						||
[inline]
 | 
						||
pub fn rotate_left_16(x u16, k int) u16 {
 | 
						||
	n := u16(16)
 | 
						||
	s := u16(k) & (n - u16(1))
 | 
						||
	return (x << s) | (x >> (n - s))
 | 
						||
}
 | 
						||
 | 
						||
// rotate_left_32 returns the value of x rotated left by (k mod 32) bits.
 | 
						||
// To rotate x right by k bits, call rotate_left_32(x, -k).
 | 
						||
//
 | 
						||
// This function's execution time does not depend on the inputs.
 | 
						||
[inline]
 | 
						||
pub fn rotate_left_32(x u32, k int) u32 {
 | 
						||
	n := u32(32)
 | 
						||
	s := u32(k) & (n - u32(1))
 | 
						||
	return (x << s) | (x >> (n - s))
 | 
						||
}
 | 
						||
 | 
						||
// rotate_left_64 returns the value of x rotated left by (k mod 64) bits.
 | 
						||
// To rotate x right by k bits, call rotate_left_64(x, -k).
 | 
						||
//
 | 
						||
// This function's execution time does not depend on the inputs.
 | 
						||
[inline]
 | 
						||
pub fn rotate_left_64(x u64, k int) u64 {
 | 
						||
	n := u64(64)
 | 
						||
	s := u64(k) & (n - u64(1))
 | 
						||
	return (x << s) | (x >> (n - s))
 | 
						||
}
 | 
						||
 | 
						||
// --- Reverse ---
 | 
						||
// reverse_8 returns the value of x with its bits in reversed order.
 | 
						||
[inline]
 | 
						||
pub fn reverse_8(x u8) u8 {
 | 
						||
	return rev_8_tab[x]
 | 
						||
}
 | 
						||
 | 
						||
// reverse_16 returns the value of x with its bits in reversed order.
 | 
						||
[inline]
 | 
						||
pub fn reverse_16(x u16) u16 {
 | 
						||
	return u16(rev_8_tab[x >> 8]) | (u16(rev_8_tab[x & u16(0xff)]) << 8)
 | 
						||
}
 | 
						||
 | 
						||
// reverse_32 returns the value of x with its bits in reversed order.
 | 
						||
[inline]
 | 
						||
pub fn reverse_32(x u32) u32 {
 | 
						||
	mut y := ((x >> u32(1) & (bits.m0 & bits.max_u32)) | ((x & (bits.m0 & bits.max_u32)) << 1))
 | 
						||
	y = ((y >> u32(2) & (bits.m1 & bits.max_u32)) | ((y & (bits.m1 & bits.max_u32)) << u32(2)))
 | 
						||
	y = ((y >> u32(4) & (bits.m2 & bits.max_u32)) | ((y & (bits.m2 & bits.max_u32)) << u32(4)))
 | 
						||
	return reverse_bytes_32(u32(y))
 | 
						||
}
 | 
						||
 | 
						||
// reverse_64 returns the value of x with its bits in reversed order.
 | 
						||
[inline]
 | 
						||
pub fn reverse_64(x u64) u64 {
 | 
						||
	mut y := ((x >> u64(1) & (bits.m0 & bits.max_u64)) | ((x & (bits.m0 & bits.max_u64)) << 1))
 | 
						||
	y = ((y >> u64(2) & (bits.m1 & bits.max_u64)) | ((y & (bits.m1 & bits.max_u64)) << 2))
 | 
						||
	y = ((y >> u64(4) & (bits.m2 & bits.max_u64)) | ((y & (bits.m2 & bits.max_u64)) << 4))
 | 
						||
	return reverse_bytes_64(y)
 | 
						||
}
 | 
						||
 | 
						||
// --- ReverseBytes ---
 | 
						||
// reverse_bytes_16 returns the value of x with its bytes in reversed order.
 | 
						||
//
 | 
						||
// This function's execution time does not depend on the inputs.
 | 
						||
[inline]
 | 
						||
pub fn reverse_bytes_16(x u16) u16 {
 | 
						||
	return (x >> 8) | (x << 8)
 | 
						||
}
 | 
						||
 | 
						||
// reverse_bytes_32 returns the value of x with its bytes in reversed order.
 | 
						||
//
 | 
						||
// This function's execution time does not depend on the inputs.
 | 
						||
[inline]
 | 
						||
pub fn reverse_bytes_32(x u32) u32 {
 | 
						||
	y := ((x >> u32(8) & (bits.m3 & bits.max_u32)) | ((x & (bits.m3 & bits.max_u32)) << u32(8)))
 | 
						||
	return u32((y >> 16) | (y << 16))
 | 
						||
}
 | 
						||
 | 
						||
// reverse_bytes_64 returns the value of x with its bytes in reversed order.
 | 
						||
//
 | 
						||
// This function's execution time does not depend on the inputs.
 | 
						||
[inline]
 | 
						||
pub fn reverse_bytes_64(x u64) u64 {
 | 
						||
	mut y := ((x >> u64(8) & (bits.m3 & bits.max_u64)) | ((x & (bits.m3 & bits.max_u64)) << u64(8)))
 | 
						||
	y = ((y >> u64(16) & (bits.m4 & bits.max_u64)) | ((y & (bits.m4 & bits.max_u64)) << u64(16)))
 | 
						||
	return (y >> 32) | (y << 32)
 | 
						||
}
 | 
						||
 | 
						||
// --- Len ---
 | 
						||
// len_8 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
 | 
						||
pub fn len_8(x u8) int {
 | 
						||
	return int(len_8_tab[x])
 | 
						||
}
 | 
						||
 | 
						||
// len_16 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
 | 
						||
pub fn len_16(x u16) int {
 | 
						||
	mut y := x
 | 
						||
	mut n := 0
 | 
						||
	if y >= 1 << 8 {
 | 
						||
		y >>= 8
 | 
						||
		n = 8
 | 
						||
	}
 | 
						||
	return n + int(len_8_tab[y])
 | 
						||
}
 | 
						||
 | 
						||
// len_32 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
 | 
						||
pub fn len_32(x u32) int {
 | 
						||
	mut y := x
 | 
						||
	mut n := 0
 | 
						||
	if y >= (1 << 16) {
 | 
						||
		y >>= 16
 | 
						||
		n = 16
 | 
						||
	}
 | 
						||
	if y >= (1 << 8) {
 | 
						||
		y >>= 8
 | 
						||
		n += 8
 | 
						||
	}
 | 
						||
	return n + int(len_8_tab[y])
 | 
						||
}
 | 
						||
 | 
						||
// len_64 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
 | 
						||
pub fn len_64(x u64) int {
 | 
						||
	mut y := x
 | 
						||
	mut n := 0
 | 
						||
	if y >= u64(1) << u64(32) {
 | 
						||
		y >>= 32
 | 
						||
		n = 32
 | 
						||
	}
 | 
						||
	if y >= u64(1) << u64(16) {
 | 
						||
		y >>= 16
 | 
						||
		n += 16
 | 
						||
	}
 | 
						||
	if y >= u64(1) << u64(8) {
 | 
						||
		y >>= 8
 | 
						||
		n += 8
 | 
						||
	}
 | 
						||
	return n + int(len_8_tab[y])
 | 
						||
}
 | 
						||
 | 
						||
// --- Add with carry ---
 | 
						||
// Add returns the sum with carry of x, y and carry: sum = x + y + carry.
 | 
						||
// The carry input must be 0 or 1; otherwise the behavior is undefined.
 | 
						||
// The carryOut output is guaranteed to be 0 or 1.
 | 
						||
//
 | 
						||
// add_32 returns the sum with carry of x, y and carry: sum = x + y + carry.
 | 
						||
// The carry input must be 0 or 1; otherwise the behavior is undefined.
 | 
						||
// The carryOut output is guaranteed to be 0 or 1.
 | 
						||
//
 | 
						||
// This function's execution time does not depend on the inputs.
 | 
						||
pub fn add_32(x u32, y u32, carry u32) (u32, u32) {
 | 
						||
	sum64 := u64(x) + u64(y) + u64(carry)
 | 
						||
	sum := u32(sum64)
 | 
						||
	carry_out := u32(sum64 >> 32)
 | 
						||
	return sum, carry_out
 | 
						||
}
 | 
						||
 | 
						||
// add_64 returns the sum with carry of x, y and carry: sum = x + y + carry.
 | 
						||
// The carry input must be 0 or 1; otherwise the behavior is undefined.
 | 
						||
// The carryOut output is guaranteed to be 0 or 1.
 | 
						||
//
 | 
						||
// This function's execution time does not depend on the inputs.
 | 
						||
pub fn add_64(x u64, y u64, carry u64) (u64, u64) {
 | 
						||
	sum := x + y + carry
 | 
						||
	// The sum will overflow if both top bits are set (x & y) or if one of them
 | 
						||
	// is (x | y), and a carry from the lower place happened. If such a carry
 | 
						||
	// happens, the top bit will be 1 + 0 + 1 = 0 (&^ sum).
 | 
						||
	carry_out := ((x & y) | ((x | y) & ~sum)) >> 63
 | 
						||
	return sum, carry_out
 | 
						||
}
 | 
						||
 | 
						||
// --- Subtract with borrow ---
 | 
						||
// Sub returns the difference of x, y and borrow: diff = x - y - borrow.
 | 
						||
// The borrow input must be 0 or 1; otherwise the behavior is undefined.
 | 
						||
// The borrowOut output is guaranteed to be 0 or 1.
 | 
						||
//
 | 
						||
// sub_32 returns the difference of x, y and borrow, diff = x - y - borrow.
 | 
						||
// The borrow input must be 0 or 1; otherwise the behavior is undefined.
 | 
						||
// The borrowOut output is guaranteed to be 0 or 1.
 | 
						||
//
 | 
						||
// This function's execution time does not depend on the inputs.
 | 
						||
pub fn sub_32(x u32, y u32, borrow u32) (u32, u32) {
 | 
						||
	diff := x - y - borrow
 | 
						||
	// The difference will underflow if the top bit of x is not set and the top
 | 
						||
	// bit of y is set (^x & y) or if they are the same (^(x ^ y)) and a borrow
 | 
						||
	// from the lower place happens. If that borrow happens, the result will be
 | 
						||
	// 1 - 1 - 1 = 0 - 0 - 1 = 1 (& diff).
 | 
						||
	borrow_out := ((~x & y) | (~(x ^ y) & diff)) >> 31
 | 
						||
	return diff, borrow_out
 | 
						||
}
 | 
						||
 | 
						||
// sub_64 returns the difference of x, y and borrow: diff = x - y - borrow.
 | 
						||
// The borrow input must be 0 or 1; otherwise the behavior is undefined.
 | 
						||
// The borrowOut output is guaranteed to be 0 or 1.
 | 
						||
//
 | 
						||
// This function's execution time does not depend on the inputs.
 | 
						||
pub fn sub_64(x u64, y u64, borrow u64) (u64, u64) {
 | 
						||
	diff := x - y - borrow
 | 
						||
	// See Sub32 for the bit logic.
 | 
						||
	borrow_out := ((~x & y) | (~(x ^ y) & diff)) >> 63
 | 
						||
	return diff, borrow_out
 | 
						||
}
 | 
						||
 | 
						||
// --- Full-width multiply ---
 | 
						||
const (
 | 
						||
	two32          = u64(0x100000000)
 | 
						||
	mask32         = two32 - 1
 | 
						||
	overflow_error = 'Overflow Error'
 | 
						||
	divide_error   = 'Divide Error'
 | 
						||
)
 | 
						||
 | 
						||
// mul_32 returns the 64-bit product of x and y: (hi, lo) = x * y
 | 
						||
// with the product bits' upper half returned in hi and the lower
 | 
						||
// half returned in lo.
 | 
						||
//
 | 
						||
// This function's execution time does not depend on the inputs.
 | 
						||
pub fn mul_32(x u32, y u32) (u32, u32) {
 | 
						||
	tmp := u64(x) * u64(y)
 | 
						||
	hi := u32(tmp >> 32)
 | 
						||
	lo := u32(tmp)
 | 
						||
	return hi, lo
 | 
						||
}
 | 
						||
 | 
						||
// mul_64 returns the 128-bit product of x and y: (hi, lo) = x * y
 | 
						||
// with the product bits' upper half returned in hi and the lower
 | 
						||
// half returned in lo.
 | 
						||
//
 | 
						||
// This function's execution time does not depend on the inputs.
 | 
						||
pub fn mul_64(x u64, y u64) (u64, u64) {
 | 
						||
	x0 := x & bits.mask32
 | 
						||
	x1 := x >> 32
 | 
						||
	y0 := y & bits.mask32
 | 
						||
	y1 := y >> 32
 | 
						||
	w0 := x0 * y0
 | 
						||
	t := x1 * y0 + (w0 >> 32)
 | 
						||
	mut w1 := t & bits.mask32
 | 
						||
	w2 := t >> 32
 | 
						||
	w1 += x0 * y1
 | 
						||
	hi := x1 * y1 + w2 + (w1 >> 32)
 | 
						||
	lo := x * y
 | 
						||
	return hi, lo
 | 
						||
}
 | 
						||
 | 
						||
// --- Full-width divide ---
 | 
						||
// div_32 returns the quotient and remainder of (hi, lo) divided by y:
 | 
						||
// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
 | 
						||
// half in parameter hi and the lower half in parameter lo.
 | 
						||
// div_32 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
 | 
						||
pub fn div_32(hi u32, lo u32, y u32) (u32, u32) {
 | 
						||
	if y != 0 && y <= hi {
 | 
						||
		panic(bits.overflow_error)
 | 
						||
	}
 | 
						||
	z := (u64(hi) << 32) | u64(lo)
 | 
						||
	quo := u32(z / u64(y))
 | 
						||
	rem := u32(z % u64(y))
 | 
						||
	return quo, rem
 | 
						||
}
 | 
						||
 | 
						||
// div_64 returns the quotient and remainder of (hi, lo) divided by y:
 | 
						||
// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
 | 
						||
// half in parameter hi and the lower half in parameter lo.
 | 
						||
// div_64 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
 | 
						||
pub fn div_64(hi u64, lo u64, y1 u64) (u64, u64) {
 | 
						||
	mut y := y1
 | 
						||
	if y == 0 {
 | 
						||
		panic(bits.overflow_error)
 | 
						||
	}
 | 
						||
	if y <= hi {
 | 
						||
		panic(bits.overflow_error)
 | 
						||
	}
 | 
						||
	s := u32(leading_zeros_64(y))
 | 
						||
	y <<= s
 | 
						||
	yn1 := y >> 32
 | 
						||
	yn0 := y & bits.mask32
 | 
						||
	ss1 := (hi << s)
 | 
						||
	xxx := 64 - s
 | 
						||
	mut ss2 := lo >> xxx
 | 
						||
	if xxx == 64 {
 | 
						||
		// in Go, shifting right a u64 number, 64 times produces 0 *always*.
 | 
						||
		// See https://go.dev/ref/spec
 | 
						||
		// > The shift operators implement arithmetic shifts if the left operand
 | 
						||
		// > is a signed integer and logical shifts if it is an unsigned integer.
 | 
						||
		// > There is no upper limit on the shift count.
 | 
						||
		// > Shifts behave as if the left operand is shifted n times by 1 for a shift count of n.
 | 
						||
		// > As a result, x << 1 is the same as x*2 and x >> 1 is the same as x/2
 | 
						||
		// > but truncated towards negative infinity.
 | 
						||
		//
 | 
						||
		// In V, that is currently left to whatever C is doing, which is apparently a NOP.
 | 
						||
		// This function was a direct port of https://cs.opensource.google/go/go/+/refs/tags/go1.17.6:src/math/bits/bits.go;l=512,
 | 
						||
		// so we have to use the Go behaviour.
 | 
						||
		// TODO: reconsider whether we need to adopt it for our shift ops, or just use function wrappers that do it.
 | 
						||
		ss2 = 0
 | 
						||
	}
 | 
						||
	un32 := ss1 | ss2
 | 
						||
	un10 := lo << s
 | 
						||
	un1 := un10 >> 32
 | 
						||
	un0 := un10 & bits.mask32
 | 
						||
	mut q1 := un32 / yn1
 | 
						||
	mut rhat := un32 - (q1 * yn1)
 | 
						||
	for (q1 >= bits.two32) || (q1 * yn0) > ((bits.two32 * rhat) + un1) {
 | 
						||
		q1--
 | 
						||
		rhat += yn1
 | 
						||
		if rhat >= bits.two32 {
 | 
						||
			break
 | 
						||
		}
 | 
						||
	}
 | 
						||
	un21 := (un32 * bits.two32) + (un1 - (q1 * y))
 | 
						||
	mut q0 := un21 / yn1
 | 
						||
	rhat = un21 - q0 * yn1
 | 
						||
	for (q0 >= bits.two32) || (q0 * yn0) > ((bits.two32 * rhat) + un0) {
 | 
						||
		q0--
 | 
						||
		rhat += yn1
 | 
						||
		if rhat >= bits.two32 {
 | 
						||
			break
 | 
						||
		}
 | 
						||
	}
 | 
						||
	qq := ((q1 * bits.two32) + q0)
 | 
						||
	rr := ((un21 * bits.two32) + un0 - (q0 * y)) >> s
 | 
						||
	return qq, rr
 | 
						||
}
 | 
						||
 | 
						||
// rem_32 returns the remainder of (hi, lo) divided by y. Rem32 panics
 | 
						||
// for y == 0 (division by zero) but, unlike Div32, it doesn't panic
 | 
						||
// on a quotient overflow.
 | 
						||
pub fn rem_32(hi u32, lo u32, y u32) u32 {
 | 
						||
	return u32(((u64(hi) << 32) | u64(lo)) % u64(y))
 | 
						||
}
 | 
						||
 | 
						||
// rem_64 returns the remainder of (hi, lo) divided by y. Rem64 panics
 | 
						||
// for y == 0 (division by zero) but, unlike div_64, it doesn't panic
 | 
						||
// on a quotient overflow.
 | 
						||
pub fn rem_64(hi u64, lo u64, y u64) u64 {
 | 
						||
	// We scale down hi so that hi < y, then use div_64 to compute the
 | 
						||
	// rem with the guarantee that it won't panic on quotient overflow.
 | 
						||
	// Given that
 | 
						||
	// hi ≡ hi%y    (mod y)
 | 
						||
	// we have
 | 
						||
	// hi<<64 + lo ≡ (hi%y)<<64 + lo    (mod y)
 | 
						||
	_, rem := div_64(hi % y, lo, y)
 | 
						||
	return rem
 | 
						||
}
 | 
						||
 | 
						||
// normalize returns a normal number y and exponent exp
 | 
						||
// satisfying x == y × 2**exp. It assumes x is finite and non-zero.
 | 
						||
pub fn normalize(x f64) (f64, int) {
 | 
						||
	smallest_normal := 2.2250738585072014e-308 // 2**-1022
 | 
						||
	if (if x > 0.0 {
 | 
						||
		x
 | 
						||
	} else {
 | 
						||
		-x
 | 
						||
	}) < smallest_normal {
 | 
						||
		return x * (u64(1) << u64(52)), -52
 | 
						||
	}
 | 
						||
	return x, 0
 | 
						||
}
 |