v/vlib/builtin/prealloc.c.v

115 lines
3.2 KiB
V

module builtin
// With -prealloc, V calls libc's malloc to get chunks, each at least 16MB
// in size, as needed. Once a chunk is available, all malloc() calls within
// V code, that can fit inside the chunk, will use it instead, each bumping a
// pointer, till the chunk is filled. Once a chunk is filled, a new chunk will
// be allocated by calling libc's malloc, and the process continues.
// Each new chunk has a pointer to the old one, and at the end of the program,
// the entire linked list of chunks is freed.
// The goal of all this is to amortize the cost of calling libc's malloc,
// trading higher memory usage for a compiler (or any single threaded batch
// mode program), for a ~8-10% speed increase.
// NB: `-prealloc` is NOT safe to be used for multithreaded programs!
// size of the preallocated chunk
const prealloc_block_size = 16 * 1024 * 1024
__global g_memory_block &VMemoryBlock
[heap]
struct VMemoryBlock {
mut:
id int
cap int
start &byte = 0
previous &VMemoryBlock = 0
remaining int
current &byte = 0
mallocs int
}
[unsafe]
fn vmemory_block_new(prev &VMemoryBlock, at_least int) &VMemoryBlock {
mut v := unsafe { &VMemoryBlock(C.calloc(1, sizeof(VMemoryBlock))) }
if prev != 0 {
v.id = prev.id + 1
}
v.previous = prev
block_size := if at_least < prealloc_block_size { prealloc_block_size } else { at_least }
v.start = unsafe { C.malloc(block_size) }
v.cap = block_size
v.remaining = block_size
v.current = v.start
return v
}
[unsafe]
fn vmemory_block_malloc(n int) &byte {
unsafe {
if g_memory_block.remaining < n {
g_memory_block = vmemory_block_new(g_memory_block, n)
}
mut res := &byte(0)
res = g_memory_block.current
g_memory_block.remaining -= n
g_memory_block.mallocs++
g_memory_block.current += n
return res
}
}
/////////////////////////////////////////////////
[unsafe]
fn prealloc_vinit() {
unsafe {
g_memory_block = vmemory_block_new(voidptr(0), prealloc_block_size)
$if !freestanding {
C.atexit(prealloc_vcleanup)
}
}
}
[unsafe]
fn prealloc_vcleanup() {
$if prealloc_stats ? {
// NB: we do 2 loops here, because string interpolation
// in the first loop may still use g_memory_block
// The second loop however should *not* allocate at all.
mut nr_mallocs := i64(0)
mut mb := g_memory_block
for mb != 0 {
nr_mallocs += mb.mallocs
eprintln('> freeing mb.id: ${mb.id:3} | cap: ${mb.cap:7} | rem: ${mb.remaining:7} | start: ${voidptr(mb.start)} | current: ${voidptr(mb.current)} | diff: ${u64(mb.current) - u64(mb.start):7} bytes | mallocs: $mb.mallocs')
mb = mb.previous
}
eprintln('> nr_mallocs: $nr_mallocs')
}
unsafe {
for g_memory_block != 0 {
C.free(g_memory_block.start)
g_memory_block = g_memory_block.previous
}
}
}
[unsafe]
fn prealloc_malloc(n int) &byte {
return unsafe { vmemory_block_malloc(n) }
}
[unsafe]
fn prealloc_realloc(old_data &byte, old_size int, new_size int) &byte {
new_ptr := unsafe { vmemory_block_malloc(new_size) }
min_size := if old_size < new_size { old_size } else { new_size }
unsafe { C.memcpy(new_ptr, old_data, min_size) }
return new_ptr
}
[unsafe]
fn prealloc_calloc(n int) &byte {
new_ptr := unsafe { vmemory_block_malloc(n) }
unsafe { C.memset(new_ptr, 0, n) }
return new_ptr
}