v/vlib/gg/m4/matrix.v

596 lines
14 KiB
V

/**********************************************************************
*
* Simply vector/matrix utility
*
* Copyright (c) 2021 Dario Deledda. All rights reserved.
* Use of this source code is governed by an MIT license
* that can be found in the LICENSE file.
*
* TODO:
**********************************************************************/
module m4
import math
pub union Mat4 {
pub mut:
e [16]f32
f [4][4]f32
}
pub const precision = f32(10e-7)
// default precision for the module
/*********************************************************************
*
* Utility
*
*********************************************************************/
// String representation of the matrix
pub fn (x Mat4) str() string {
unsafe {
return '|${x.e[0]:-6.3},${x.e[1]:-6.3},${x.e[2]:-6.3},${x.e[3]:-6.3}|\n' +
'|${x.e[4]:-6.3},${x.e[5]:-6.3},${x.e[6]:-6.3},${x.e[7]:-6.3}|\n' +
'|${x.e[8]:-6.3},${x.e[9]:-6.3},${x.e[10]:-6.3},${x.e[11]:-6.3}|\n' +
'|${x.e[12]:-6.3},${x.e[13]:-6.3},${x.e[14]:-6.3},${x.e[15]:-6.3}|'
}
}
// Remove all the raw zeros
[direct_array_access]
pub fn (a Mat4) clean() Mat4 {
unsafe {
x := Mat4{}
for c, value in a.e {
if f32_abs(value) < m4.precision {
x.e[c] = 0
} else {
x.e[c] = value
}
}
return x
}
}
// Sum all the elements of the matrix
pub fn (x Mat4) sum_all() f32 {
mut res := f32(0)
for v in unsafe { x.e } {
res += v
}
return res
}
// Check if two matrix are equal using module precision
[direct_array_access]
pub fn (x Mat4) is_equal(y Mat4) bool {
unsafe {
for c, value in x.e {
if f32_abs(value - y.e[c]) > m4.precision {
return false
}
}
return true
}
}
//-------------------------------------
// Set/Get values
//-------------------------------------
// Get an element of the matrix using [0..15] indexes, one dimension
pub fn (x Mat4) get_e(elem_index int) f32 {
unsafe {
return x.e[elem_index]
}
}
// Get an element of the matrix using [0..3][0..3] indexes, two dimension
pub fn (x Mat4) get_f(index_col int, index_row int) f32 {
unsafe {
return x.e[(index_row << 2) + index_col]
}
}
// Set an element of the matrix using [0..15] indexes, one dimension
pub fn (mut x Mat4) set_e(index int, value f32) {
unsafe {
x.e[index] = value
}
}
// Set an element of the matrix using [0..3][0..3] indexes, two dimension
pub fn (mut x Mat4) set_f(index_col int, index_row int, value f32) {
unsafe {
x.e[(index_row << 2) + index_col] = value
}
}
// Copy a matrix elements from another matrix
pub fn (mut x Mat4) copy(y Mat4) {
unsafe {
x.e = [
y.e[0 ], y.e[1 ], y.e[2 ], y.e[3 ],
y.e[4 ], y.e[5 ], y.e[6 ], y.e[7 ],
y.e[8 ], y.e[9 ], y.e[10], y.e[11],
y.e[12], y.e[13], y.e[14], y.e[15],
]!
}
}
// Set the trace of the matrix using a vec4
pub fn (mut x Mat4) set_trace(v3 Vec4) {
unsafe {
x.e[0 ] = v3.e[0]
x.e[5 ] = v3.e[1]
x.e[10] = v3.e[2]
x.e[15] = v3.e[3]
}
}
// Get the trace of the matrix
pub fn (x Mat4) get_trace() Vec4 {
unsafe {
return Vec4{ e: [ x.e[0], x.e[5], x.e[10], x.e[15], ]! }
}
}
// Set all the matrix elements to value
pub fn (mut x Mat4) set_f32(value f32) {
unsafe {
x.e = [
value, value, value, value,
value, value, value, value,
value, value, value, value,
value, value, value, value,
]!
}
}
//-------------------------------------
// Rows/Column access
//-------------------------------------
// Set the row as the input vec4
[direct_array_access]
[unsafe]
pub fn (mut x Mat4) set_row(row int, v3 Vec4) {
unsafe {
x.e[row * 4 + 0] = v3.e[0]
x.e[row * 4 + 1] = v3.e[1]
x.e[row * 4 + 2] = v3.e[2]
x.e[row * 4 + 3] = v3.e[3]
}
}
// Get a row from a matrix
[direct_array_access]
[unsafe]
pub fn (x Mat4) get_row(row int) Vec4 {
unsafe {
return Vec4{
e: [
x.e[row * 4 + 0],
x.e[row * 4 + 1],
x.e[row * 4 + 2],
x.e[row * 4 + 3],
]!
}
}
}
// Set the column as the input vec4
[direct_array_access]
[unsafe]
pub fn (mut x Mat4) set_col(col int, v3 Vec4) {
unsafe {
x.e[col] = v3.e[0]
x.e[col + 4 ] = v3.e[1]
x.e[col + 8 ] = v3.e[2]
x.e[col + 12] = v3.e[3]
}
}
// Get a column from a matrix
[direct_array_access]
[unsafe]
pub fn (x Mat4) get_col(col int) Vec4 {
unsafe {
return Vec4{
e: [
x.e[col],
x.e[col + 4 ],
x.e[col + 8 ],
x.e[col + 12],
]!
}
}
}
// Swap two columns in the matrix
[direct_array_access]
[unsafe]
pub fn (mut x Mat4) swap_col(col1 int, col2 int) {
unsafe {
v0 := x.e[col1]
v1 := x.e[col1 + 4 ]
v2 := x.e[col1 + 8 ]
v3 := x.e[col1 + 12]
x.e[col1] = x.e[col2]
x.e[col1 + 4 ] = x.e[col2 + 4 ]
x.e[col1 + 8 ] = x.e[col2 + 8 ]
x.e[col1 + 12] = x.e[col2 + 12]
x.e[col2] = v0
x.e[col2 + 4 ] = v1
x.e[col2 + 8 ] = v2
x.e[col2 + 12] = v3
}
}
// Swap two rows in the matrix
[direct_array_access]
[unsafe]
pub fn (mut x Mat4) swap_row(row1 int, row2 int) {
unsafe {
v0 := x.e[row1 * 4 + 0]
v1 := x.e[row1 * 4 + 1]
v2 := x.e[row1 * 4 + 2]
v3 := x.e[row1 * 4 + 3]
x.e[row1 * 4 + 0] = x.e[row2 * 4 + 0]
x.e[row1 * 4 + 1] = x.e[row2 * 4 + 1]
x.e[row1 * 4 + 2] = x.e[row2 * 4 + 2]
x.e[row1 * 4 + 3] = x.e[row2 * 4 + 3]
x.e[row2 * 4 + 0] = v0
x.e[row2 * 4 + 1] = v1
x.e[row2 * 4 + 2] = v2
x.e[row2 * 4 + 3] = v3
}
}
//-------------------------------------
// Modify data
//-------------------------------------
// Transpose the matrix
pub fn (x Mat4) transpose() Mat4 {
unsafe {
return Mat4{ e: [
x.e[0 ], x.e[4 ], x.e[8 ], x.e[12],
x.e[1 ], x.e[5 ], x.e[9 ], x.e[13],
x.e[2 ], x.e[6 ], x.e[10], x.e[14],
x.e[3 ], x.e[7 ], x.e[11], x.e[15],
]!
}
}
}
// Multiply the all the elements of the matrix by a scalar
pub fn (x Mat4) mul_scalar(s f32) Mat4 {
unsafe {
return Mat4{ e: [
x.e[0 ] * s, x.e[1 ] * s, x.e[2 ] * s, x.e[3 ] * s,
x.e[4 ] * s, x.e[5 ] * s, x.e[6 ] * s, x.e[7 ] * s,
x.e[8 ] * s, x.e[9 ] * s, x.e[10] * s, x.e[11] * s,
x.e[12] * s, x.e[13] * s, x.e[14] * s, x.e[15] * s,
]!
}
}
}
/*********************************************************************
*
* Init/set
*
*********************************************************************/
// Return a zero matrix
pub fn zero_m4() Mat4 {
return Mat4{ e: [
f32(0), 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
]!
}
}
// Return a unity matrix
pub fn unit_m4() Mat4 {
return Mat4{ e: [
f32(1), 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1,
]!
}
}
// Return a matrix initialized with value
pub fn set_m4(value f32) Mat4 {
return Mat4{ e: [
value, value, value, value,
value, value, value, value,
value, value, value, value,
value, value, value, value,
]!
}
}
/*********************************************************************
*
* Math
*
*********************************************************************/
// Sum of matrix, operator +
pub fn (a Mat4) + (b Mat4) Mat4 {
unsafe {
return Mat4{ e: [
a.e[0 ] + b.e[0 ], a.e[1 ] + b.e[1 ], a.e[2 ] + b.e[2 ], a.e[3 ] + b.e[3 ],
a.e[4 ] + b.e[4 ], a.e[5 ] + b.e[5 ], a.e[6 ] + b.e[6 ], a.e[7 ] + b.e[7 ],
a.e[8 ] + b.e[8 ], a.e[9 ] + b.e[9 ], a.e[10] + b.e[10], a.e[11] + b.e[11],
a.e[12] + b.e[12], a.e[13] + b.e[13], a.e[14] + b.e[14], a.e[15] + b.e[15],
]!
}
}
}
// Subtraction of matrix, operator -
pub fn (a Mat4) - (b Mat4) Mat4 {
unsafe {
return Mat4{ e: [
a.e[0 ] - b.e[0 ], a.e[1 ] - b.e[1 ], a.e[2 ] - b.e[2 ], a.e[3 ] - b.e[3 ],
a.e[4 ] - b.e[4 ], a.e[5 ] - b.e[5 ], a.e[6 ] - b.e[6 ], a.e[7 ] - b.e[7 ],
a.e[8 ] - b.e[8 ], a.e[9 ] - b.e[9 ], a.e[10] - b.e[10], a.e[11] - b.e[11],
a.e[12] - b.e[12], a.e[13] - b.e[13], a.e[14] - b.e[14], a.e[15] - b.e[15],
]!
}
}
}
// Multiplication of matrix, operator *
pub fn (a Mat4) * (b Mat4) Mat4 {
unsafe {
return Mat4{
e: [
/* [0][0] */ a.f[0][0] * b.f[0][0] + a.f[0][1] * b.f[1][0] + a.f[0][2] * b.f[2][0] + a.f[0][3] * b.f[3][0]
/* [0][1] */, a.f[0][0] * b.f[0][1] + a.f[0][1] * b.f[1][1] + a.f[0][2] * b.f[2][1] + a.f[0][3] * b.f[3][1]
/* [0][2] */, a.f[0][0] * b.f[0][2] + a.f[0][1] * b.f[1][2] + a.f[0][2] * b.f[2][2] + a.f[0][3] * b.f[3][2]
/* [0][3] */, a.f[0][0] * b.f[0][3] + a.f[0][1] * b.f[1][3] + a.f[0][2] * b.f[2][3] + a.f[0][3] * b.f[3][3]
/* [1][0] */, a.f[1][0] * b.f[0][0] + a.f[1][1] * b.f[1][0] + a.f[1][2] * b.f[2][0] + a.f[1][3] * b.f[3][0]
/* [1][1] */, a.f[1][0] * b.f[0][1] + a.f[1][1] * b.f[1][1] + a.f[1][2] * b.f[2][1] + a.f[1][3] * b.f[3][1]
/* [1][2] */, a.f[1][0] * b.f[0][2] + a.f[1][1] * b.f[1][2] + a.f[1][2] * b.f[2][2] + a.f[1][3] * b.f[3][2]
/* [1][3] */, a.f[1][0] * b.f[0][3] + a.f[1][1] * b.f[1][3] + a.f[1][2] * b.f[2][3] + a.f[1][3] * b.f[3][3]
/* [2][0] */, a.f[2][0] * b.f[0][0] + a.f[2][1] * b.f[1][0] + a.f[2][2] * b.f[2][0] + a.f[2][3] * b.f[3][0]
/* [2][1] */, a.f[2][0] * b.f[0][1] + a.f[2][1] * b.f[1][1] + a.f[2][2] * b.f[2][1] + a.f[2][3] * b.f[3][1]
/* [2][2] */, a.f[2][0] * b.f[0][2] + a.f[2][1] * b.f[1][2] + a.f[2][2] * b.f[2][2] + a.f[2][3] * b.f[3][2]
/* [2][3] */, a.f[2][0] * b.f[0][3] + a.f[2][1] * b.f[1][3] + a.f[2][2] * b.f[2][3] + a.f[2][3] * b.f[3][3]
/* [3][0] */, a.f[3][0] * b.f[0][0] + a.f[3][1] * b.f[1][0] + a.f[3][2] * b.f[2][0] + a.f[3][3] * b.f[3][0]
/* [3][1] */, a.f[3][0] * b.f[0][1] + a.f[3][1] * b.f[1][1] + a.f[3][2] * b.f[2][1] + a.f[3][3] * b.f[3][1]
/* [3][2] */, a.f[3][0] * b.f[0][2] + a.f[3][1] * b.f[1][2] + a.f[3][2] * b.f[2][2] + a.f[3][3] * b.f[3][2]
/* [3][3] */, a.f[3][0] * b.f[0][3] + a.f[3][1] * b.f[1][3] + a.f[3][2] * b.f[2][3] + a.f[3][3] * b.f[3][3],
]!
}
}
}
// Sum of matrix function
pub fn add(a Mat4, b Mat4) Mat4 {
unsafe {
return a + b
}
}
// Subtraction of matrix function
pub fn sub(a Mat4, b Mat4) Mat4 {
unsafe {
return a - b
}
}
// Multiplication of matrix function
pub fn mul(a Mat4, b Mat4) Mat4 {
unsafe {
return a * b
}
}
// Multiply a Matrix by a vector
pub fn mul_vec(a Mat4, v Vec4) Vec4 {
unsafe {
return Vec4{ e: [
a.e[0 ] * v.e[0] + a.e[1 ] * v.e[1] + a.e[2 ] * v.e[2] + a.e[3 ] * v.e[3],
a.e[4 ] * v.e[0] + a.e[5 ] * v.e[1] + a.e[6 ] * v.e[2] + a.e[7 ] * v.e[3],
a.e[8 ] * v.e[0] + a.e[9 ] * v.e[1] + a.e[10] * v.e[2] + a.e[11] * v.e[3],
a.e[12] * v.e[0] + a.e[13] * v.e[1] + a.e[14] * v.e[2] + a.e[15] * v.e[3],
]!
}
}
}
// Calculate the determinant of the Matrix
pub fn det(x Mat4) f32 {
unsafe {
mut t := [6]f32{}
x00 := x.f[0][0]
x10 := x.f[1][0]
x20 := x.f[2][0]
x30 := x.f[3][0]
x01 := x.f[0][1]
x11 := x.f[1][1]
x21 := x.f[2][1]
x31 := x.f[3][1]
x02 := x.f[0][2]
x12 := x.f[1][2]
x22 := x.f[2][2]
x32 := x.f[3][2]
x03 := x.f[0][3]
x13 := x.f[1][3]
x23 := x.f[2][3]
x33 := x.f[3][3]
t[0] = x22 * x33 - x23 * x32
t[1] = x12 * x33 - x13 * x32
t[2] = x12 * x23 - x13 * x22
t[3] = x02 * x33 - x03 * x32
t[4] = x02 * x23 - x03 * x22
t[5] = x02 * x13 - x03 * x12
return 0.0 +
x00 * (x11 * t[0] - x21 * t[1] + x31 * t[2]) -
x10 * (x01 * t[0] - x21 * t[3] + x31 * t[4]) +
x20 * (x01 * t[1] - x11 * t[3] + x31 * t[5]) -
x30 * (x01 * t[2] - x11 * t[4] + x21 * t[5])
}
}
// Calculate the inverse of the Matrix
pub fn (x Mat4) inverse() Mat4 {
unsafe {
mut t := [6]f32{}
mut det := f32(0)
a := x.f[0][0]
b := x.f[1][0]
c := x.f[2][0]
d := x.f[3][0]
e := x.f[0][1]
f := x.f[1][1]
g := x.f[2][1]
h := x.f[3][1]
i := x.f[0][2]
j := x.f[1][2]
k := x.f[2][2]
l := x.f[3][2]
m := x.f[0][3]
n := x.f[1][3]
o := x.f[2][3]
p := x.f[3][3]
t[0] = k * p - o * l
t[1] = j * p - n * l
t[2] = j * o - n * k
t[3] = i * p - m * l
t[4] = i * o - m * k
t[5] = i * n - m * j
mut dest := Mat4{}
dest.f[0][0] = f * t[0] - g * t[1] + h * t[2]
dest.f[0][1] = -(e * t[0] - g * t[3] + h * t[4])
dest.f[0][2] = e * t[1] - f * t[3] + h * t[5]
dest.f[0][3] = -(e * t[2] - f * t[4] + g * t[5])
dest.f[1][0] = -(b * t[0] - c * t[1] + d * t[2])
dest.f[1][1] = a * t[0] - c * t[3] + d * t[4]
dest.f[1][2] = -(a * t[1] - b * t[3] + d * t[5])
dest.f[1][3] = a * t[2] - b * t[4] + c * t[5]
t[0] = g * p - o * h
t[1] = f * p - n * h
t[2] = f * o - n * g
t[3] = e * p - m * h
t[4] = e * o - m * g
t[5] = e * n - m * f
dest.f[2][0] = b * t[0] - c * t[1] + d * t[2]
dest.f[2][1] = -(a * t[0] - c * t[3] + d * t[4])
dest.f[2][2] = a * t[1] - b * t[3] + d * t[5]
dest.f[2][3] = -(a * t[2] - b * t[4] + c * t[5])
t[0] = g * l - k * h
t[1] = f * l - j * h
t[2] = f * k - j * g
t[3] = e * l - i * h
t[4] = e * k - i * g
t[5] = e * j - i * f
dest.f[3][0] = -(b * t[0] - c * t[1] + d * t[2])
dest.f[3][1] = a * t[0] - c * t[3] + d * t[4]
dest.f[3][2] = -(a * t[1] - b * t[3] + d * t[5])
dest.f[3][3] = a * t[2] - b * t[4] + c * t[5]
tmp := (a * dest.f[0][0] + b * dest.f[0][1] + c * dest.f[0][2] + d * dest.f[0][3])
if tmp != 0 {
det = f32(1.0) / tmp
}
return dest.mul_scalar(det)
}
}
/*********************************************************************
*
* Transformations
*
*********************************************************************/
// Get a rotation matrix using w as rotation axis vector, the angle is in radians
pub fn rotate(angle f32, w Vec4) Mat4 {
cs := f32(math.cos(angle))
sn := f32(math.sin(angle))
cv := f32(1.0) - cs
axis := w.normalize3()
unsafe {
ax := axis.e[0]
ay := axis.e[1]
az := axis.e[2]
return Mat4{ e: [
/* [0][0] */ (ax * ax * cv) + cs
/* [0][1] */, (ax * ay * cv) + az * sn
/* [0][2] */, (ax * az * cv) - ay * sn
/* [0][3] */, 0
/* [1][0] */, (ay * ax * cv) - az * sn
/* [1][1] */, (ay * ay * cv) + cs
/* [1][2] */, (ay * az * cv) + ax * sn
/* [1][3] */, 0
/* [2][0] */, (az * ax * cv) + ay * sn
/* [2][1] */, (az * ay * cv) - ax * sn
/* [2][2] */, (az * az * cv) + cs
/* [2][3] */, 0
/* [3][0] */, 0
/* [3][1] */, 0
/* [3][2] */, 0
/* [3][3] */, 1,
]!
}
}
}
/*********************************************************************
*
* Graphic
*
*********************************************************************/
// Get a matrix translated by a vector w
pub fn (x Mat4) translate(w Vec4) Mat4 {
unsafe {
return Mat4{ e: [
x.e[0], x.e[1], x.e[2 ], x.e[3 ] ,
x.e[4], x.e[5], x.e[6 ], x.e[7 ] ,
x.e[8], x.e[9], x.e[10], x.e[11] ,
x.e[12] + w.e[0], x.e[13] + w.e[1], x.e[14] + w.e[2], x.e[15],
]!
}
}
}
// Get a scale matrix, the scale vector is w, only xyz are evaluated.
pub fn scale(w Vec4) Mat4 {
unsafe {
return Mat4{ e: [
w.e[0], 0, 0, 0,
0, w.e[1], 0, 0,
0, 0, w.e[2], 0,
0, 0, 0, 1,
]!
}
}
}