v/vlib/rand/dist/dist.v

86 lines
2.6 KiB
V

// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module dist
import math
import rand
fn check_probability_range(p f64) {
if p < 0 || p > 1 {
panic('$p is not a valid probability value.')
}
}
// bernoulli returns true with a probability p. Note that 0 <= p <= 1.
pub fn bernoulli(p f64) bool {
check_probability_range(p)
return rand.f64() <= p
}
// binomial returns the number of successful trials out of n when the
// probability of success for each trial is p.
pub fn binomial(n int, p f64) int {
check_probability_range(p)
mut count := 0
for _ in 0 .. n {
if bernoulli(p) {
count++
}
}
return count
}
// Configuration struct for the `normal_pair` function. The default value for
// `mu` is 0 and the default value for `sigma` is 1.
pub struct NormalConfigStruct {
mu f64 = 0.0
sigma f64 = 1.0
}
// normal_pair returns a pair of normally distributed random numbers with the mean mu
// and standard deviation sigma. If not specified, mu is 0 and sigma is 1. Intended usage is
// `x, y := normal_pair(mu: mean, sigma: stdev)`, or `x, y := normal_pair()`.
pub fn normal_pair(config NormalConfigStruct) (f64, f64) {
if config.sigma <= 0 {
panic('The standard deviation has to be positive.')
}
// This is an implementation of the Marsaglia polar method
// See: https://doi.org/10.1137%2F1006063
// Also: https://en.wikipedia.org/wiki/Marsaglia_polar_method
for {
u := rand.f64_in_range(-1, 1)
v := rand.f64_in_range(-1, 1)
s := u * u + v * v
if s >= 1 || s == 0 {
continue
}
t := math.sqrt(-2 * math.log(s) / s)
x := config.mu + config.sigma * t * u
y := config.mu + config.sigma * t * v
return x, y
}
return config.mu, config.mu
}
// normal returns a normally distributed random number with the mean mu and standard deviation
// sigma. If not specified, mu is 0 and sigma is 1. Intended usage is
// `x := normal(mu: mean, sigma: etdev)` or `x := normal()`.
// **NOTE:** If you are generating a lot of normal variates, use `the normal_pair` function
// instead. This function discards one of the two variates generated by the `normal_pair` function.
pub fn normal(config NormalConfigStruct) f64 {
x, _ := normal_pair(config)
return x
}
// exponential returns an exponentially distributed random number with the rate paremeter
// lambda. It is expected that lambda is positive.
pub fn exponential(lambda f64) f64 {
if lambda <= 0 {
panic('The rate (lambda) must be positive.')
}
// Use the inverse transform sampling method
return -math.log(rand.f64()) / lambda
}