513 lines
17 KiB
V
513 lines
17 KiB
V
// Copyright (c) 2019-2022 Alexander Medvednikov. All rights reserved.
|
||
// Use of this source code is governed by an MIT license
|
||
// that can be found in the LICENSE file.
|
||
module bits
|
||
|
||
const (
|
||
// See http://supertech.csail.mit.edu/papers/debruijn.pdf
|
||
de_bruijn32 = u32(0x077CB531)
|
||
de_bruijn32tab = [byte(0), 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 31, 27, 13,
|
||
23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9]
|
||
de_bruijn64 = u64(0x03f79d71b4ca8b09)
|
||
de_bruijn64tab = [byte(0), 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4, 62, 47,
|
||
59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5, 63, 55, 48, 27, 60, 41, 37, 16,
|
||
46, 35, 44, 21, 52, 32, 23, 11, 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7,
|
||
6]
|
||
)
|
||
|
||
const (
|
||
m0 = u64(0x5555555555555555) // 01010101 ...
|
||
m1 = u64(0x3333333333333333) // 00110011 ...
|
||
m2 = u64(0x0f0f0f0f0f0f0f0f) // 00001111 ...
|
||
m3 = u64(0x00ff00ff00ff00ff) // etc.
|
||
m4 = u64(0x0000ffff0000ffff)
|
||
)
|
||
|
||
const (
|
||
// save importing math mod just for these
|
||
max_u32 = u32(4294967295)
|
||
max_u64 = u64(18446744073709551615)
|
||
)
|
||
|
||
// --- LeadingZeros ---
|
||
// leading_zeros_8 returns the number of leading zero bits in x; the result is 8 for x == 0.
|
||
pub fn leading_zeros_8(x byte) int {
|
||
return 8 - len_8(x)
|
||
}
|
||
|
||
// leading_zeros_16 returns the number of leading zero bits in x; the result is 16 for x == 0.
|
||
pub fn leading_zeros_16(x u16) int {
|
||
return 16 - len_16(x)
|
||
}
|
||
|
||
// leading_zeros_32 returns the number of leading zero bits in x; the result is 32 for x == 0.
|
||
pub fn leading_zeros_32(x u32) int {
|
||
return 32 - len_32(x)
|
||
}
|
||
|
||
// leading_zeros_64 returns the number of leading zero bits in x; the result is 64 for x == 0.
|
||
pub fn leading_zeros_64(x u64) int {
|
||
return 64 - len_64(x)
|
||
}
|
||
|
||
// --- TrailingZeros ---
|
||
// trailing_zeros_8 returns the number of trailing zero bits in x; the result is 8 for x == 0.
|
||
pub fn trailing_zeros_8(x u8) int {
|
||
return int(ntz_8_tab[x])
|
||
}
|
||
|
||
// trailing_zeros_16 returns the number of trailing zero bits in x; the result is 16 for x == 0.
|
||
pub fn trailing_zeros_16(x u16) int {
|
||
if x == 0 {
|
||
return 16
|
||
}
|
||
// see comment in trailing_zeros_64
|
||
return int(bits.de_bruijn32tab[u32(x & -x) * bits.de_bruijn32 >> (32 - 5)])
|
||
}
|
||
|
||
// trailing_zeros_32 returns the number of trailing zero bits in x; the result is 32 for x == 0.
|
||
pub fn trailing_zeros_32(x u32) int {
|
||
if x == 0 {
|
||
return 32
|
||
}
|
||
// see comment in trailing_zeros_64
|
||
return int(bits.de_bruijn32tab[(x & -x) * bits.de_bruijn32 >> (32 - 5)])
|
||
}
|
||
|
||
// trailing_zeros_64 returns the number of trailing zero bits in x; the result is 64 for x == 0.
|
||
pub fn trailing_zeros_64(x u64) int {
|
||
if x == 0 {
|
||
return 64
|
||
}
|
||
// If popcount is fast, replace code below with return popcount(^x & (x - 1)).
|
||
//
|
||
// x & -x leaves only the right-most bit set in the word. Let k be the
|
||
// index of that bit. Since only a single bit is set, the value is two
|
||
// to the power of k. Multiplying by a power of two is equivalent to
|
||
// left shifting, in this case by k bits. The de Bruijn (64 bit) constant
|
||
// is such that all six bit, consecutive substrings are distinct.
|
||
// Therefore, if we have a left shifted version of this constant we can
|
||
// find by how many bits it was shifted by looking at which six bit
|
||
// substring ended up at the top of the word.
|
||
// (Knuth, volume 4, section 7.3.1)
|
||
return int(bits.de_bruijn64tab[(x & -x) * bits.de_bruijn64 >> (64 - 6)])
|
||
}
|
||
|
||
// --- OnesCount ---
|
||
// ones_count_8 returns the number of one bits ("population count") in x.
|
||
pub fn ones_count_8(x u8) int {
|
||
return int(pop_8_tab[x])
|
||
}
|
||
|
||
// ones_count_16 returns the number of one bits ("population count") in x.
|
||
pub fn ones_count_16(x u16) int {
|
||
return int(pop_8_tab[x >> 8] + pop_8_tab[x & u16(0xff)])
|
||
}
|
||
|
||
// ones_count_32 returns the number of one bits ("population count") in x.
|
||
pub fn ones_count_32(x u32) int {
|
||
return int(pop_8_tab[x >> 24] + pop_8_tab[x >> 16 & 0xff] + pop_8_tab[x >> 8 & 0xff] +
|
||
pop_8_tab[x & u32(0xff)])
|
||
}
|
||
|
||
// ones_count_64 returns the number of one bits ("population count") in x.
|
||
pub fn ones_count_64(x u64) int {
|
||
// Implementation: Parallel summing of adjacent bits.
|
||
// See "Hacker's Delight", Chap. 5: Counting Bits.
|
||
// The following pattern shows the general approach:
|
||
//
|
||
// x = x>>1&(m0&m) + x&(m0&m)
|
||
// x = x>>2&(m1&m) + x&(m1&m)
|
||
// x = x>>4&(m2&m) + x&(m2&m)
|
||
// x = x>>8&(m3&m) + x&(m3&m)
|
||
// x = x>>16&(m4&m) + x&(m4&m)
|
||
// x = x>>32&(m5&m) + x&(m5&m)
|
||
// return int(x)
|
||
//
|
||
// Masking (& operations) can be left away when there's no
|
||
// danger that a field's sum will carry over into the next
|
||
// field: Since the result cannot be > 64, 8 bits is enough
|
||
// and we can ignore the masks for the shifts by 8 and up.
|
||
// Per "Hacker's Delight", the first line can be simplified
|
||
// more, but it saves at best one instruction, so we leave
|
||
// it alone for clarity.
|
||
mut y := (x >> u64(1) & (bits.m0 & bits.max_u64)) + (x & (bits.m0 & bits.max_u64))
|
||
y = (y >> u64(2) & (bits.m1 & bits.max_u64)) + (y & (bits.m1 & bits.max_u64))
|
||
y = ((y >> 4) + y) & (bits.m2 & bits.max_u64)
|
||
y += y >> 8
|
||
y += y >> 16
|
||
y += y >> 32
|
||
return int(y) & ((1 << 7) - 1)
|
||
}
|
||
|
||
// --- RotateLeft ---
|
||
// rotate_left_8 returns the value of x rotated left by (k mod 8) bits.
|
||
// To rotate x right by k bits, call rotate_left_8(x, -k).
|
||
//
|
||
// This function's execution time does not depend on the inputs.
|
||
[inline]
|
||
pub fn rotate_left_8(x byte, k int) byte {
|
||
n := byte(8)
|
||
s := u8(k) & (n - u8(1))
|
||
return (x << s) | (x >> (n - s))
|
||
}
|
||
|
||
// rotate_left_16 returns the value of x rotated left by (k mod 16) bits.
|
||
// To rotate x right by k bits, call rotate_left_16(x, -k).
|
||
//
|
||
// This function's execution time does not depend on the inputs.
|
||
[inline]
|
||
pub fn rotate_left_16(x u16, k int) u16 {
|
||
n := u16(16)
|
||
s := u16(k) & (n - u16(1))
|
||
return (x << s) | (x >> (n - s))
|
||
}
|
||
|
||
// rotate_left_32 returns the value of x rotated left by (k mod 32) bits.
|
||
// To rotate x right by k bits, call rotate_left_32(x, -k).
|
||
//
|
||
// This function's execution time does not depend on the inputs.
|
||
[inline]
|
||
pub fn rotate_left_32(x u32, k int) u32 {
|
||
n := u32(32)
|
||
s := u32(k) & (n - u32(1))
|
||
return (x << s) | (x >> (n - s))
|
||
}
|
||
|
||
// rotate_left_64 returns the value of x rotated left by (k mod 64) bits.
|
||
// To rotate x right by k bits, call rotate_left_64(x, -k).
|
||
//
|
||
// This function's execution time does not depend on the inputs.
|
||
[inline]
|
||
pub fn rotate_left_64(x u64, k int) u64 {
|
||
n := u64(64)
|
||
s := u64(k) & (n - u64(1))
|
||
return (x << s) | (x >> (n - s))
|
||
}
|
||
|
||
// --- Reverse ---
|
||
// reverse_8 returns the value of x with its bits in reversed order.
|
||
[inline]
|
||
pub fn reverse_8(x u8) u8 {
|
||
return rev_8_tab[x]
|
||
}
|
||
|
||
// reverse_16 returns the value of x with its bits in reversed order.
|
||
[inline]
|
||
pub fn reverse_16(x u16) u16 {
|
||
return u16(rev_8_tab[x >> 8]) | (u16(rev_8_tab[x & u16(0xff)]) << 8)
|
||
}
|
||
|
||
// reverse_32 returns the value of x with its bits in reversed order.
|
||
[inline]
|
||
pub fn reverse_32(x u32) u32 {
|
||
mut y := ((x >> u32(1) & (bits.m0 & bits.max_u32)) | ((x & (bits.m0 & bits.max_u32)) << 1))
|
||
y = ((y >> u32(2) & (bits.m1 & bits.max_u32)) | ((y & (bits.m1 & bits.max_u32)) << u32(2)))
|
||
y = ((y >> u32(4) & (bits.m2 & bits.max_u32)) | ((y & (bits.m2 & bits.max_u32)) << u32(4)))
|
||
return reverse_bytes_32(u32(y))
|
||
}
|
||
|
||
// reverse_64 returns the value of x with its bits in reversed order.
|
||
[inline]
|
||
pub fn reverse_64(x u64) u64 {
|
||
mut y := ((x >> u64(1) & (bits.m0 & bits.max_u64)) | ((x & (bits.m0 & bits.max_u64)) << 1))
|
||
y = ((y >> u64(2) & (bits.m1 & bits.max_u64)) | ((y & (bits.m1 & bits.max_u64)) << 2))
|
||
y = ((y >> u64(4) & (bits.m2 & bits.max_u64)) | ((y & (bits.m2 & bits.max_u64)) << 4))
|
||
return reverse_bytes_64(y)
|
||
}
|
||
|
||
// --- ReverseBytes ---
|
||
// reverse_bytes_16 returns the value of x with its bytes in reversed order.
|
||
//
|
||
// This function's execution time does not depend on the inputs.
|
||
[inline]
|
||
pub fn reverse_bytes_16(x u16) u16 {
|
||
return (x >> 8) | (x << 8)
|
||
}
|
||
|
||
// reverse_bytes_32 returns the value of x with its bytes in reversed order.
|
||
//
|
||
// This function's execution time does not depend on the inputs.
|
||
[inline]
|
||
pub fn reverse_bytes_32(x u32) u32 {
|
||
y := ((x >> u32(8) & (bits.m3 & bits.max_u32)) | ((x & (bits.m3 & bits.max_u32)) << u32(8)))
|
||
return u32((y >> 16) | (y << 16))
|
||
}
|
||
|
||
// reverse_bytes_64 returns the value of x with its bytes in reversed order.
|
||
//
|
||
// This function's execution time does not depend on the inputs.
|
||
[inline]
|
||
pub fn reverse_bytes_64(x u64) u64 {
|
||
mut y := ((x >> u64(8) & (bits.m3 & bits.max_u64)) | ((x & (bits.m3 & bits.max_u64)) << u64(8)))
|
||
y = ((y >> u64(16) & (bits.m4 & bits.max_u64)) | ((y & (bits.m4 & bits.max_u64)) << u64(16)))
|
||
return (y >> 32) | (y << 32)
|
||
}
|
||
|
||
// --- Len ---
|
||
// len_8 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
|
||
pub fn len_8(x u8) int {
|
||
return int(len_8_tab[x])
|
||
}
|
||
|
||
// len_16 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
|
||
pub fn len_16(x u16) int {
|
||
mut y := x
|
||
mut n := 0
|
||
if y >= 1 << 8 {
|
||
y >>= 8
|
||
n = 8
|
||
}
|
||
return n + int(len_8_tab[y])
|
||
}
|
||
|
||
// len_32 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
|
||
pub fn len_32(x u32) int {
|
||
mut y := x
|
||
mut n := 0
|
||
if y >= (1 << 16) {
|
||
y >>= 16
|
||
n = 16
|
||
}
|
||
if y >= (1 << 8) {
|
||
y >>= 8
|
||
n += 8
|
||
}
|
||
return n + int(len_8_tab[y])
|
||
}
|
||
|
||
// len_64 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
|
||
pub fn len_64(x u64) int {
|
||
mut y := x
|
||
mut n := 0
|
||
if y >= u64(1) << u64(32) {
|
||
y >>= 32
|
||
n = 32
|
||
}
|
||
if y >= u64(1) << u64(16) {
|
||
y >>= 16
|
||
n += 16
|
||
}
|
||
if y >= u64(1) << u64(8) {
|
||
y >>= 8
|
||
n += 8
|
||
}
|
||
return n + int(len_8_tab[y])
|
||
}
|
||
|
||
// --- Add with carry ---
|
||
// Add returns the sum with carry of x, y and carry: sum = x + y + carry.
|
||
// The carry input must be 0 or 1; otherwise the behavior is undefined.
|
||
// The carryOut output is guaranteed to be 0 or 1.
|
||
//
|
||
// add_32 returns the sum with carry of x, y and carry: sum = x + y + carry.
|
||
// The carry input must be 0 or 1; otherwise the behavior is undefined.
|
||
// The carryOut output is guaranteed to be 0 or 1.
|
||
//
|
||
// This function's execution time does not depend on the inputs.
|
||
pub fn add_32(x u32, y u32, carry u32) (u32, u32) {
|
||
sum64 := u64(x) + u64(y) + u64(carry)
|
||
sum := u32(sum64)
|
||
carry_out := u32(sum64 >> 32)
|
||
return sum, carry_out
|
||
}
|
||
|
||
// add_64 returns the sum with carry of x, y and carry: sum = x + y + carry.
|
||
// The carry input must be 0 or 1; otherwise the behavior is undefined.
|
||
// The carryOut output is guaranteed to be 0 or 1.
|
||
//
|
||
// This function's execution time does not depend on the inputs.
|
||
pub fn add_64(x u64, y u64, carry u64) (u64, u64) {
|
||
sum := x + y + carry
|
||
// The sum will overflow if both top bits are set (x & y) or if one of them
|
||
// is (x | y), and a carry from the lower place happened. If such a carry
|
||
// happens, the top bit will be 1 + 0 + 1 = 0 (&^ sum).
|
||
carry_out := ((x & y) | ((x | y) & ~sum)) >> 63
|
||
return sum, carry_out
|
||
}
|
||
|
||
// --- Subtract with borrow ---
|
||
// Sub returns the difference of x, y and borrow: diff = x - y - borrow.
|
||
// The borrow input must be 0 or 1; otherwise the behavior is undefined.
|
||
// The borrowOut output is guaranteed to be 0 or 1.
|
||
//
|
||
// sub_32 returns the difference of x, y and borrow, diff = x - y - borrow.
|
||
// The borrow input must be 0 or 1; otherwise the behavior is undefined.
|
||
// The borrowOut output is guaranteed to be 0 or 1.
|
||
//
|
||
// This function's execution time does not depend on the inputs.
|
||
pub fn sub_32(x u32, y u32, borrow u32) (u32, u32) {
|
||
diff := x - y - borrow
|
||
// The difference will underflow if the top bit of x is not set and the top
|
||
// bit of y is set (^x & y) or if they are the same (^(x ^ y)) and a borrow
|
||
// from the lower place happens. If that borrow happens, the result will be
|
||
// 1 - 1 - 1 = 0 - 0 - 1 = 1 (& diff).
|
||
borrow_out := ((~x & y) | (~(x ^ y) & diff)) >> 31
|
||
return diff, borrow_out
|
||
}
|
||
|
||
// sub_64 returns the difference of x, y and borrow: diff = x - y - borrow.
|
||
// The borrow input must be 0 or 1; otherwise the behavior is undefined.
|
||
// The borrowOut output is guaranteed to be 0 or 1.
|
||
//
|
||
// This function's execution time does not depend on the inputs.
|
||
pub fn sub_64(x u64, y u64, borrow u64) (u64, u64) {
|
||
diff := x - y - borrow
|
||
// See Sub32 for the bit logic.
|
||
borrow_out := ((~x & y) | (~(x ^ y) & diff)) >> 63
|
||
return diff, borrow_out
|
||
}
|
||
|
||
// --- Full-width multiply ---
|
||
const (
|
||
two32 = u64(0x100000000)
|
||
mask32 = two32 - 1
|
||
overflow_error = 'Overflow Error'
|
||
divide_error = 'Divide Error'
|
||
)
|
||
|
||
// mul_32 returns the 64-bit product of x and y: (hi, lo) = x * y
|
||
// with the product bits' upper half returned in hi and the lower
|
||
// half returned in lo.
|
||
//
|
||
// This function's execution time does not depend on the inputs.
|
||
pub fn mul_32(x u32, y u32) (u32, u32) {
|
||
tmp := u64(x) * u64(y)
|
||
hi := u32(tmp >> 32)
|
||
lo := u32(tmp)
|
||
return hi, lo
|
||
}
|
||
|
||
// mul_64 returns the 128-bit product of x and y: (hi, lo) = x * y
|
||
// with the product bits' upper half returned in hi and the lower
|
||
// half returned in lo.
|
||
//
|
||
// This function's execution time does not depend on the inputs.
|
||
pub fn mul_64(x u64, y u64) (u64, u64) {
|
||
x0 := x & bits.mask32
|
||
x1 := x >> 32
|
||
y0 := y & bits.mask32
|
||
y1 := y >> 32
|
||
w0 := x0 * y0
|
||
t := x1 * y0 + (w0 >> 32)
|
||
mut w1 := t & bits.mask32
|
||
w2 := t >> 32
|
||
w1 += x0 * y1
|
||
hi := x1 * y1 + w2 + (w1 >> 32)
|
||
lo := x * y
|
||
return hi, lo
|
||
}
|
||
|
||
// --- Full-width divide ---
|
||
// div_32 returns the quotient and remainder of (hi, lo) divided by y:
|
||
// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
|
||
// half in parameter hi and the lower half in parameter lo.
|
||
// div_32 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
|
||
pub fn div_32(hi u32, lo u32, y u32) (u32, u32) {
|
||
if y != 0 && y <= hi {
|
||
panic(bits.overflow_error)
|
||
}
|
||
z := (u64(hi) << 32) | u64(lo)
|
||
quo := u32(z / u64(y))
|
||
rem := u32(z % u64(y))
|
||
return quo, rem
|
||
}
|
||
|
||
// div_64 returns the quotient and remainder of (hi, lo) divided by y:
|
||
// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
|
||
// half in parameter hi and the lower half in parameter lo.
|
||
// div_64 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
|
||
pub fn div_64(hi u64, lo u64, y1 u64) (u64, u64) {
|
||
mut y := y1
|
||
if y == 0 {
|
||
panic(bits.overflow_error)
|
||
}
|
||
if y <= hi {
|
||
panic(bits.overflow_error)
|
||
}
|
||
s := u32(leading_zeros_64(y))
|
||
y <<= s
|
||
yn1 := y >> 32
|
||
yn0 := y & bits.mask32
|
||
ss1 := (hi << s)
|
||
xxx := 64 - s
|
||
mut ss2 := lo >> xxx
|
||
if xxx == 64 {
|
||
// in Go, shifting right a u64 number, 64 times produces 0 *always*.
|
||
// See https://go.dev/ref/spec
|
||
// > The shift operators implement arithmetic shifts if the left operand
|
||
// > is a signed integer and logical shifts if it is an unsigned integer.
|
||
// > There is no upper limit on the shift count.
|
||
// > Shifts behave as if the left operand is shifted n times by 1 for a shift count of n.
|
||
// > As a result, x << 1 is the same as x*2 and x >> 1 is the same as x/2
|
||
// > but truncated towards negative infinity.
|
||
//
|
||
// In V, that is currently left to whatever C is doing, which is apparently a NOP.
|
||
// This function was a direct port of https://cs.opensource.google/go/go/+/refs/tags/go1.17.6:src/math/bits/bits.go;l=512,
|
||
// so we have to use the Go behaviour.
|
||
// TODO: reconsider whether we need to adopt it for our shift ops, or just use function wrappers that do it.
|
||
ss2 = 0
|
||
}
|
||
un32 := ss1 | ss2
|
||
un10 := lo << s
|
||
un1 := un10 >> 32
|
||
un0 := un10 & bits.mask32
|
||
mut q1 := un32 / yn1
|
||
mut rhat := un32 - (q1 * yn1)
|
||
for (q1 >= bits.two32) || (q1 * yn0) > ((bits.two32 * rhat) + un1) {
|
||
q1--
|
||
rhat += yn1
|
||
if rhat >= bits.two32 {
|
||
break
|
||
}
|
||
}
|
||
un21 := (un32 * bits.two32) + (un1 - (q1 * y))
|
||
mut q0 := un21 / yn1
|
||
rhat = un21 - q0 * yn1
|
||
for (q0 >= bits.two32) || (q0 * yn0) > ((bits.two32 * rhat) + un0) {
|
||
q0--
|
||
rhat += yn1
|
||
if rhat >= bits.two32 {
|
||
break
|
||
}
|
||
}
|
||
qq := ((q1 * bits.two32) + q0)
|
||
rr := ((un21 * bits.two32) + un0 - (q0 * y)) >> s
|
||
return qq, rr
|
||
}
|
||
|
||
// rem_32 returns the remainder of (hi, lo) divided by y. Rem32 panics
|
||
// for y == 0 (division by zero) but, unlike Div32, it doesn't panic
|
||
// on a quotient overflow.
|
||
pub fn rem_32(hi u32, lo u32, y u32) u32 {
|
||
return u32(((u64(hi) << 32) | u64(lo)) % u64(y))
|
||
}
|
||
|
||
// rem_64 returns the remainder of (hi, lo) divided by y. Rem64 panics
|
||
// for y == 0 (division by zero) but, unlike div_64, it doesn't panic
|
||
// on a quotient overflow.
|
||
pub fn rem_64(hi u64, lo u64, y u64) u64 {
|
||
// We scale down hi so that hi < y, then use div_64 to compute the
|
||
// rem with the guarantee that it won't panic on quotient overflow.
|
||
// Given that
|
||
// hi ≡ hi%y (mod y)
|
||
// we have
|
||
// hi<<64 + lo ≡ (hi%y)<<64 + lo (mod y)
|
||
_, rem := div_64(hi % y, lo, y)
|
||
return rem
|
||
}
|
||
|
||
// normalize returns a normal number y and exponent exp
|
||
// satisfying x == y × 2**exp. It assumes x is finite and non-zero.
|
||
pub fn normalize(x f64) (f64, int) {
|
||
smallest_normal := 2.2250738585072014e-308 // 2**-1022
|
||
if (if x > 0.0 {
|
||
x
|
||
} else {
|
||
-x
|
||
}) < smallest_normal {
|
||
return x * (u64(1) << u64(52)), -52
|
||
}
|
||
return x, 0
|
||
}
|