71 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			71 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			V
		
	
	
| module strings
 | ||
| // #-js
 | ||
| // use levenshtein distance algorithm to calculate
 | ||
| // the distance between between two strings (lower is closer)
 | ||
| pub fn levenshtein_distance(a, b string) int {
 | ||
| 	mut f := [0].repeat(b.len + 1)
 | ||
| 	for j in 0..f.len {
 | ||
| 		f[j] = j
 | ||
| 	}
 | ||
| 	for ca in a {
 | ||
| 		mut j := 1
 | ||
| 		mut fj1 := f[0]
 | ||
| 		f[0]++
 | ||
| 		for cb in b {
 | ||
| 			mut mn := if f[j] + 1 <= f[j - 1] + 1 { f[j] + 1 } else { f[j - 1] + 1 }
 | ||
| 			if cb != ca {
 | ||
| 				mn = if mn <= fj1 + 1 { mn } else { fj1 + 1 }
 | ||
| 			}
 | ||
| 			else {
 | ||
| 				mn = if mn <= fj1 { mn } else { fj1 }
 | ||
| 			}
 | ||
| 			fj1 = f[j]
 | ||
| 			f[j] = mn
 | ||
| 			j++
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return f[f.len - 1]
 | ||
| }
 | ||
| 
 | ||
| // use levenshtein distance algorithm to calculate
 | ||
| // how similar two strings are as a percentage (higher is closer)
 | ||
| pub fn levenshtein_distance_percentage(a, b string) f32 {
 | ||
| 	d := levenshtein_distance(a, b)
 | ||
| 	l := if a.len >= b.len { a.len } else { b.len }
 | ||
| 	return (1.00 - f32(d) / f32(l)) * 100.00
 | ||
| }
 | ||
| 
 | ||
| // implementation of Sørensen–Dice coefficient.
 | ||
| // find the similarity between two strings.
 | ||
| // returns coefficient between 0.0 (not similar) and 1.0 (exact match).
 | ||
| pub fn dice_coefficient(s1, s2 string) f32 {
 | ||
| 	if s1.len == 0 || s2.len == 0 {
 | ||
| 		return 0.0
 | ||
| 	}
 | ||
| 	if s1 == s2 {
 | ||
| 		return 1.0
 | ||
| 	}
 | ||
| 	if s1.len < 2 || s2.len < 2 {
 | ||
| 		return 0.0
 | ||
| 	}
 | ||
| 	a := if s1.len > s2.len { s1 } else { s2 }
 | ||
| 	b := if a == s1 { s2 } else { s1 }
 | ||
| 	mut first_bigrams := map[string]int
 | ||
| 	for i in 0..a.len - 1 {
 | ||
| 		bigram := a[i..i + 2]
 | ||
| 		q := if bigram in first_bigrams { first_bigrams[bigram] + 1 } else { 1 }
 | ||
| 		first_bigrams[bigram] = q
 | ||
| 	}
 | ||
| 	mut intersection_size := 0
 | ||
| 	for i in 0..b.len - 1 {
 | ||
| 		bigram := b[i..i + 2]
 | ||
| 		count := if bigram in first_bigrams { first_bigrams[bigram] } else { 0 }
 | ||
| 		if count > 0 {
 | ||
| 			first_bigrams[bigram] = count - 1
 | ||
| 			intersection_size++
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return (2.0 * f32(intersection_size)) / (f32(a.len) + f32(b.len) - 2)
 | ||
| }
 | ||
| 
 |