589 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			589 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			V
		
	
	
| // Copyright (c) 2019-2022 Alexander Medvednikov. All rights reserved.
 | |
| // Use of this source code is governed by an MIT license
 | |
| // that can be found in the LICENSE file.
 | |
| module builtin
 | |
| 
 | |
| //
 | |
| // ----- value to string functions -----
 | |
| //
 | |
| 
 | |
| // type u8 = byte
 | |
| type byte = u8
 | |
| type i32 = int
 | |
| 
 | |
| // ptr_str returns the address of `ptr` as a `string`.
 | |
| pub fn ptr_str(ptr voidptr) string {
 | |
| 	buf1 := u64(ptr).hex()
 | |
| 	return buf1
 | |
| }
 | |
| 
 | |
| // str returns string equivalent of x
 | |
| pub fn (x isize) str() string {
 | |
| 	return i64(x).str()
 | |
| }
 | |
| 
 | |
| // str returns string equivalent of x
 | |
| pub fn (x usize) str() string {
 | |
| 	return u64(x).str()
 | |
| }
 | |
| 
 | |
| // str returns string equivalent of cptr
 | |
| pub fn (cptr &char) str() string {
 | |
| 	return u64(cptr).hex()
 | |
| }
 | |
| 
 | |
| const (
 | |
| 	// digit pairs in reverse order
 | |
| 	digit_pairs = '00102030405060708090011121314151617181910212223242526272829203132333435363738393041424344454647484940515253545556575859506162636465666768696071727374757677787970818283848586878889809192939495969798999'
 | |
| )
 | |
| 
 | |
| // This implementation is the quickest with gcc -O2
 | |
| // str_l returns the string representation of the integer nn with max chars.
 | |
| [direct_array_access; inline]
 | |
| fn (nn int) str_l(max int) string {
 | |
| 	unsafe {
 | |
| 		mut n := i64(nn)
 | |
| 		mut d := 0
 | |
| 		if n == 0 {
 | |
| 			return '0'
 | |
| 		}
 | |
| 
 | |
| 		mut is_neg := false
 | |
| 		if n < 0 {
 | |
| 			n = -n
 | |
| 			is_neg = true
 | |
| 		}
 | |
| 		mut index := max
 | |
| 		mut buf := malloc_noscan(max + 1)
 | |
| 		buf[index] = 0
 | |
| 		index--
 | |
| 
 | |
| 		for n > 0 {
 | |
| 			n1 := int(n / 100)
 | |
| 			// calculate the digit_pairs start index
 | |
| 			d = int(u32(int(n) - (n1 * 100)) << 1)
 | |
| 			n = n1
 | |
| 			buf[index] = digit_pairs.str[d]
 | |
| 			index--
 | |
| 			d++
 | |
| 			buf[index] = digit_pairs.str[d]
 | |
| 			index--
 | |
| 		}
 | |
| 		index++
 | |
| 		// remove head zero
 | |
| 		if d < 20 {
 | |
| 			index++
 | |
| 		}
 | |
| 		// Prepend - if it's negative
 | |
| 		if is_neg {
 | |
| 			index--
 | |
| 			buf[index] = `-`
 | |
| 		}
 | |
| 		diff := max - index
 | |
| 		vmemmove(buf, voidptr(buf + index), diff + 1)
 | |
| 		/*
 | |
| 		// === manual memory move for bare metal ===
 | |
| 		mut c:= 0
 | |
| 		for c < diff {
 | |
| 			buf[c] = buf[c+index]
 | |
| 			c++
 | |
| 		}
 | |
| 		buf[c] = 0
 | |
| 		*/
 | |
| 		return tos(buf, diff)
 | |
| 
 | |
| 		// return tos(memdup(&buf[0] + index, (max - index)), (max - index))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // str returns the value of the `i8` as a `string`.
 | |
| // Example: assert i8(-2).str() == '-2'
 | |
| pub fn (n i8) str() string {
 | |
| 	return int(n).str_l(5)
 | |
| }
 | |
| 
 | |
| // str returns the value of the `i16` as a `string`.
 | |
| // Example: assert i16(-20).str() == '-20'
 | |
| pub fn (n i16) str() string {
 | |
| 	return int(n).str_l(7)
 | |
| }
 | |
| 
 | |
| // str returns the value of the `u16` as a `string`.
 | |
| // Example: assert u16(20).str() == '20'
 | |
| pub fn (n u16) str() string {
 | |
| 	return int(n).str_l(7)
 | |
| }
 | |
| 
 | |
| // str returns the value of the `int` as a `string`.
 | |
| // Example: assert int(-2020).str() == '-2020'
 | |
| pub fn (n int) str() string {
 | |
| 	return n.str_l(12)
 | |
| }
 | |
| 
 | |
| // str returns the value of the `u32` as a `string`.
 | |
| // Example: assert u32(20000).str() == '20000'
 | |
| [direct_array_access; inline]
 | |
| pub fn (nn u32) str() string {
 | |
| 	unsafe {
 | |
| 		mut n := nn
 | |
| 		mut d := u32(0)
 | |
| 		if n == 0 {
 | |
| 			return '0'
 | |
| 		}
 | |
| 		max := 12
 | |
| 		mut buf := malloc_noscan(max + 1)
 | |
| 		mut index := max
 | |
| 		buf[index] = 0
 | |
| 		index--
 | |
| 		for n > 0 {
 | |
| 			n1 := n / u32(100)
 | |
| 			d = ((n - (n1 * u32(100))) << u32(1))
 | |
| 			n = n1
 | |
| 			buf[index] = digit_pairs[d]
 | |
| 			index--
 | |
| 			d++
 | |
| 			buf[index] = digit_pairs[d]
 | |
| 			index--
 | |
| 		}
 | |
| 		index++
 | |
| 		// remove head zero
 | |
| 		if d < u32(20) {
 | |
| 			index++
 | |
| 		}
 | |
| 		diff := max - index
 | |
| 		vmemmove(buf, voidptr(buf + index), diff + 1)
 | |
| 		return tos(buf, diff)
 | |
| 
 | |
| 		// return tos(memdup(&buf[0] + index, (max - index)), (max - index))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // str returns the value of the `int_literal` as a `string`.
 | |
| [inline]
 | |
| pub fn (n int_literal) str() string {
 | |
| 	return i64(n).str()
 | |
| }
 | |
| 
 | |
| // str returns the value of the `i64` as a `string`.
 | |
| // Example: assert i64(-200000).str() == '-200000'
 | |
| [direct_array_access; inline]
 | |
| pub fn (nn i64) str() string {
 | |
| 	unsafe {
 | |
| 		mut n := nn
 | |
| 		mut d := i64(0)
 | |
| 		if n == 0 {
 | |
| 			return '0'
 | |
| 		}
 | |
| 		max := 20
 | |
| 		mut buf := malloc_noscan(max + 1)
 | |
| 		mut is_neg := false
 | |
| 		if n < 0 {
 | |
| 			n = -n
 | |
| 			is_neg = true
 | |
| 		}
 | |
| 		mut index := max
 | |
| 		buf[index] = 0
 | |
| 		index--
 | |
| 		for n > 0 {
 | |
| 			n1 := n / i64(100)
 | |
| 			d = (u32(n - (n1 * i64(100))) << i64(1))
 | |
| 			n = n1
 | |
| 			buf[index] = digit_pairs[d]
 | |
| 			index--
 | |
| 			d++
 | |
| 			buf[index] = digit_pairs[d]
 | |
| 			index--
 | |
| 		}
 | |
| 		index++
 | |
| 		// remove head zero
 | |
| 		if d < i64(20) {
 | |
| 			index++
 | |
| 		}
 | |
| 		// Prepend - if it's negative
 | |
| 		if is_neg {
 | |
| 			index--
 | |
| 			buf[index] = `-`
 | |
| 		}
 | |
| 		diff := max - index
 | |
| 		vmemmove(buf, voidptr(buf + index), diff + 1)
 | |
| 		return tos(buf, diff)
 | |
| 		// return tos(memdup(&buf[0] + index, (max - index)), (max - index))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // str returns the value of the `u64` as a `string`.
 | |
| // Example: assert u64(2000000).str() == '2000000'
 | |
| [direct_array_access; inline]
 | |
| pub fn (nn u64) str() string {
 | |
| 	unsafe {
 | |
| 		mut n := nn
 | |
| 		mut d := u64(0)
 | |
| 		if n == 0 {
 | |
| 			return '0'
 | |
| 		}
 | |
| 		max := 20
 | |
| 		mut buf := malloc_noscan(max + 1)
 | |
| 		mut index := max
 | |
| 		buf[index] = 0
 | |
| 		index--
 | |
| 		for n > 0 {
 | |
| 			n1 := n / 100
 | |
| 			d = ((n - (n1 * 100)) << 1)
 | |
| 			n = n1
 | |
| 			buf[index] = digit_pairs[d]
 | |
| 			index--
 | |
| 			d++
 | |
| 			buf[index] = digit_pairs[d]
 | |
| 			index--
 | |
| 		}
 | |
| 		index++
 | |
| 		// remove head zero
 | |
| 		if d < 20 {
 | |
| 			index++
 | |
| 		}
 | |
| 		diff := max - index
 | |
| 		vmemmove(buf, voidptr(buf + index), diff + 1)
 | |
| 		return tos(buf, diff)
 | |
| 		// return tos(memdup(&buf[0] + index, (max - index)), (max - index))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // str returns the value of the `bool` as a `string`.
 | |
| // Example: assert (2 > 1).str() == 'true'
 | |
| pub fn (b bool) str() string {
 | |
| 	if b {
 | |
| 		return 'true'
 | |
| 	}
 | |
| 	return 'false'
 | |
| }
 | |
| 
 | |
| //
 | |
| // ----- value to hex string functions -----
 | |
| //
 | |
| 
 | |
| // u64_to_hex converts the number `nn` to a (zero padded if necessary) hexadecimal `string`.
 | |
| [direct_array_access; inline]
 | |
| fn u64_to_hex(nn u64, len u8) string {
 | |
| 	mut n := nn
 | |
| 	mut buf := [17]u8{}
 | |
| 	buf[len] = 0
 | |
| 	mut i := 0
 | |
| 	for i = len - 1; i >= 0; i-- {
 | |
| 		d := u8(n & 0xF)
 | |
| 		buf[i] = if d < 10 { d + `0` } else { d + 87 }
 | |
| 		n = n >> 4
 | |
| 	}
 | |
| 	return unsafe { tos(memdup(&buf[0], len + 1), len) }
 | |
| }
 | |
| 
 | |
| // u64_to_hex_no_leading_zeros converts the number `nn` to hexadecimal `string`.
 | |
| [direct_array_access; inline]
 | |
| fn u64_to_hex_no_leading_zeros(nn u64, len u8) string {
 | |
| 	mut n := nn
 | |
| 	mut buf := [17]u8{}
 | |
| 	buf[len] = 0
 | |
| 	mut i := 0
 | |
| 	for i = len - 1; i >= 0; i-- {
 | |
| 		d := u8(n & 0xF)
 | |
| 		buf[i] = if d < 10 { d + `0` } else { d + 87 }
 | |
| 		n = n >> 4
 | |
| 		if n == 0 {
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| 	res_len := len - i
 | |
| 	return unsafe { tos(memdup(&buf[i], res_len + 1), res_len) }
 | |
| }
 | |
| 
 | |
| // hex returns the value of the `byte` as a hexadecimal `string`.
 | |
| // Note that the output is zero padded for values below 16.
 | |
| // Example: assert u8(2).hex() == '02'
 | |
| // Example: assert u8(15).hex() == '0f'
 | |
| // Example: assert u8(255).hex() == 'ff'
 | |
| pub fn (nn u8) hex() string {
 | |
| 	if nn == 0 {
 | |
| 		return '00'
 | |
| 	}
 | |
| 	return u64_to_hex(nn, 2)
 | |
| }
 | |
| 
 | |
| // hex returns the value of the `i8` as a hexadecimal `string`.
 | |
| // Note that the output is zero padded for values below 16.
 | |
| // Example: assert i8(8).hex() == '08'
 | |
| // Example: assert i8(10).hex() == '0a'
 | |
| // Example: assert i8(15).hex() == '0f'
 | |
| pub fn (nn i8) hex() string {
 | |
| 	if nn == 0 {
 | |
| 		return '00'
 | |
| 	}
 | |
| 	return u64_to_hex(u64(nn), 2)
 | |
| }
 | |
| 
 | |
| // hex returns the value of the `u16` as a hexadecimal `string`.
 | |
| // Note that the output is ***not*** zero padded.
 | |
| // Example: assert u16(2).hex() == '2'
 | |
| // Example: assert u16(200).hex() == 'c8'
 | |
| pub fn (nn u16) hex() string {
 | |
| 	if nn == 0 {
 | |
| 		return '0'
 | |
| 	}
 | |
| 	return u64_to_hex_no_leading_zeros(nn, 4)
 | |
| }
 | |
| 
 | |
| // hex returns the value of the `i16` as a hexadecimal `string`.
 | |
| // Note that the output is ***not*** zero padded.
 | |
| // Example: assert i16(2).hex() == '2'
 | |
| // Example: assert i16(200).hex() == 'c8'
 | |
| pub fn (nn i16) hex() string {
 | |
| 	return u16(nn).hex()
 | |
| }
 | |
| 
 | |
| // hex returns the value of the `u32` as a hexadecimal `string`.
 | |
| // Note that the output is ***not*** zero padded.
 | |
| // Example: assert u32(2).hex() == '2'
 | |
| // Example: assert u32(200).hex() == 'c8'
 | |
| pub fn (nn u32) hex() string {
 | |
| 	if nn == 0 {
 | |
| 		return '0'
 | |
| 	}
 | |
| 	return u64_to_hex_no_leading_zeros(nn, 8)
 | |
| }
 | |
| 
 | |
| // hex returns the value of the `int` as a hexadecimal `string`.
 | |
| // Note that the output is ***not*** zero padded.
 | |
| // Example: assert int(2).hex() == '2'
 | |
| // Example: assert int(200).hex() == 'c8'
 | |
| pub fn (nn int) hex() string {
 | |
| 	return u32(nn).hex()
 | |
| }
 | |
| 
 | |
| // hex2 returns the value of the `int` as a `0x`-prefixed hexadecimal `string`.
 | |
| // Note that the output after `0x` is ***not*** zero padded.
 | |
| // Example: assert int(8).hex2() == '0x8'
 | |
| // Example: assert int(15).hex2() == '0xf'
 | |
| // Example: assert int(18).hex2() == '0x12'
 | |
| pub fn (n int) hex2() string {
 | |
| 	return '0x' + n.hex()
 | |
| }
 | |
| 
 | |
| // hex returns the value of the `u64` as a hexadecimal `string`.
 | |
| // Note that the output is ***not*** zero padded.
 | |
| // Example: assert u64(2).hex() == '2'
 | |
| // Example: assert u64(2000).hex() == '7d0'
 | |
| pub fn (nn u64) hex() string {
 | |
| 	if nn == 0 {
 | |
| 		return '0'
 | |
| 	}
 | |
| 	return u64_to_hex_no_leading_zeros(nn, 16)
 | |
| }
 | |
| 
 | |
| // hex returns the value of the `i64` as a hexadecimal `string`.
 | |
| // Note that the output is ***not*** zero padded.
 | |
| // Example: assert i64(2).hex() == '2'
 | |
| // Example: assert i64(-200).hex() == 'ffffffffffffff38'
 | |
| // Example: assert i64(2021).hex() == '7e5'
 | |
| pub fn (nn i64) hex() string {
 | |
| 	return u64(nn).hex()
 | |
| }
 | |
| 
 | |
| // hex returns the value of the `int_literal` as a hexadecimal `string`.
 | |
| // Note that the output is ***not*** zero padded.
 | |
| pub fn (nn int_literal) hex() string {
 | |
| 	return u64(nn).hex()
 | |
| }
 | |
| 
 | |
| // hex returns the value of the `voidptr` as a hexadecimal `string`.
 | |
| // Note that the output is ***not*** zero padded.
 | |
| pub fn (nn voidptr) str() string {
 | |
| 	return '0x' + u64(nn).hex()
 | |
| }
 | |
| 
 | |
| // hex returns the value of the `byteptr` as a hexadecimal `string`.
 | |
| // Note that the output is ***not*** zero padded.
 | |
| // pub fn (nn byteptr) str() string {
 | |
| pub fn (nn byteptr) str() string {
 | |
| 	return '0x' + u64(nn).hex()
 | |
| }
 | |
| 
 | |
| pub fn (nn charptr) str() string {
 | |
| 	return '0x' + u64(nn).hex()
 | |
| }
 | |
| 
 | |
| pub fn (nn u8) hex_full() string {
 | |
| 	return u64_to_hex(u64(nn), 2)
 | |
| }
 | |
| 
 | |
| pub fn (nn i8) hex_full() string {
 | |
| 	return u64_to_hex(u64(nn), 2)
 | |
| }
 | |
| 
 | |
| pub fn (nn u16) hex_full() string {
 | |
| 	return u64_to_hex(u64(nn), 4)
 | |
| }
 | |
| 
 | |
| pub fn (nn i16) hex_full() string {
 | |
| 	return u64_to_hex(u64(nn), 4)
 | |
| }
 | |
| 
 | |
| pub fn (nn u32) hex_full() string {
 | |
| 	return u64_to_hex(u64(nn), 8)
 | |
| }
 | |
| 
 | |
| pub fn (nn int) hex_full() string {
 | |
| 	return u64_to_hex(u64(nn), 8)
 | |
| }
 | |
| 
 | |
| pub fn (nn i64) hex_full() string {
 | |
| 	return u64_to_hex(u64(nn), 16)
 | |
| }
 | |
| 
 | |
| pub fn (nn voidptr) hex_full() string {
 | |
| 	return u64_to_hex(u64(nn), 16)
 | |
| }
 | |
| 
 | |
| pub fn (nn int_literal) hex_full() string {
 | |
| 	return u64_to_hex(u64(nn), 16)
 | |
| }
 | |
| 
 | |
| // hex_full returns the value of the `u64` as a *full* 16-digit hexadecimal `string`.
 | |
| // Example: assert u64(2).hex_full() == '0000000000000002'
 | |
| // Example: assert u64(255).hex_full() == '00000000000000ff'
 | |
| pub fn (nn u64) hex_full() string {
 | |
| 	return u64_to_hex(nn, 16)
 | |
| }
 | |
| 
 | |
| // str returns the contents of `byte` as a zero terminated `string`.
 | |
| // See also: [`byte.ascii_str`](#byte.ascii_str)
 | |
| // Example: assert u8(111).str() == '111'
 | |
| pub fn (b u8) str() string {
 | |
| 	return int(b).str_l(7)
 | |
| }
 | |
| 
 | |
| // ascii_str returns the contents of `byte` as a zero terminated ASCII `string` character.
 | |
| // Example: assert u8(97).ascii_str() == 'a'
 | |
| pub fn (b u8) ascii_str() string {
 | |
| 	mut str := string{
 | |
| 		str: unsafe { malloc_noscan(2) }
 | |
| 		len: 1
 | |
| 	}
 | |
| 	unsafe {
 | |
| 		str.str[0] = b
 | |
| 		str.str[1] = 0
 | |
| 	}
 | |
| 	// println(str)
 | |
| 	return str
 | |
| }
 | |
| 
 | |
| // str_escaped returns the contents of `byte` as an escaped `string`.
 | |
| // Example: assert u8(0).str_escaped() == r'`\0`'
 | |
| [manualfree]
 | |
| pub fn (b u8) str_escaped() string {
 | |
| 	str := match b {
 | |
| 		0 {
 | |
| 			r'`\0`'
 | |
| 		}
 | |
| 		7 {
 | |
| 			r'`\a`'
 | |
| 		}
 | |
| 		8 {
 | |
| 			r'`\b`'
 | |
| 		}
 | |
| 		9 {
 | |
| 			r'`\t`'
 | |
| 		}
 | |
| 		10 {
 | |
| 			r'`\n`'
 | |
| 		}
 | |
| 		11 {
 | |
| 			r'`\v`'
 | |
| 		}
 | |
| 		12 {
 | |
| 			r'`\f`'
 | |
| 		}
 | |
| 		13 {
 | |
| 			r'`\r`'
 | |
| 		}
 | |
| 		27 {
 | |
| 			r'`\e`'
 | |
| 		}
 | |
| 		32...126 {
 | |
| 			b.ascii_str()
 | |
| 		}
 | |
| 		else {
 | |
| 			xx := b.hex()
 | |
| 			yy := '0x' + xx
 | |
| 			unsafe { xx.free() }
 | |
| 			yy
 | |
| 		}
 | |
| 	}
 | |
| 	return str
 | |
| }
 | |
| 
 | |
| // is_capital returns `true`, if the byte is a Latin capital letter.
 | |
| // Example: assert `H`.is_capital() == true
 | |
| // Example: assert `h`.is_capital() == false
 | |
| [inline]
 | |
| pub fn (c u8) is_capital() bool {
 | |
| 	return c >= `A` && c <= `Z`
 | |
| }
 | |
| 
 | |
| // clone clones the byte array, and returns the newly created copy.
 | |
| pub fn (b []u8) clone() []u8 {
 | |
| 	mut res := []u8{len: b.len}
 | |
| 	// mut res := make([]u8, {repeat:b.len})
 | |
| 	for i in 0 .. b.len {
 | |
| 		res[i] = b[i]
 | |
| 	}
 | |
| 	return res
 | |
| }
 | |
| 
 | |
| // bytestr produces a string from *all* the bytes in the array.
 | |
| // Note: the returned string will have .len equal to the array.len,
 | |
| // even when some of the array bytes were `0`.
 | |
| // If you want to get a V string, that contains only the bytes till
 | |
| // the first `0` byte, use `tos_clone(&u8(array.data))` instead.
 | |
| pub fn (b []u8) bytestr() string {
 | |
| 	unsafe {
 | |
| 		buf := malloc_noscan(b.len + 1)
 | |
| 		vmemcpy(buf, b.data, b.len)
 | |
| 		buf[b.len] = 0
 | |
| 		return tos(buf, b.len)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // byterune attempts to decode a sequence of bytes
 | |
| // from utf8 to utf32 and return the result as a rune
 | |
| // it will produce an error if there are more than
 | |
| // four bytes in the array.
 | |
| pub fn (b []u8) byterune() ?rune {
 | |
| 	r := b.utf8_to_utf32() ?
 | |
| 	return rune(r)
 | |
| }
 | |
| 
 | |
| // repeat returns a new string with `count` number of copies of the byte it was called on.
 | |
| pub fn (b u8) repeat(count int) string {
 | |
| 	if count < 0 {
 | |
| 		panic('byte.repeat: count is negative: $count')
 | |
| 	} else if count == 0 {
 | |
| 		return ''
 | |
| 	} else if count == 1 {
 | |
| 		return b.ascii_str()
 | |
| 	}
 | |
| 	mut ret := unsafe { malloc_noscan(count + 1) }
 | |
| 	for i in 0 .. count {
 | |
| 		unsafe {
 | |
| 			ret[i] = b
 | |
| 		}
 | |
| 	}
 | |
| 	new_len := count
 | |
| 	unsafe {
 | |
| 		ret[new_len] = 0
 | |
| 	}
 | |
| 	return unsafe { ret.vstring_with_len(new_len) }
 | |
| }
 | |
| 
 | |
| // for atomic ints, internal
 | |
| fn _Atomic__int_str(x int) string {
 | |
| 	return x.str()
 | |
| }
 |