v/vlib/math/math.v

217 lines
4.2 KiB
Go

// Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module math
const (
E = 2.71828182845904523536028747135266249775724709369995957496696763
Pi = 3.14159265358979323846264338327950288419716939937510582097494459
Phi = 1.61803398874989484820458683436563811772030917980576286213544862
Tau = 6.28318530717958647692528676655900576839433879875021164194988918
Sqrt2 = 1.41421356237309504880168872420969807856967187537694807317667974
SqrtE = 1.64872127070012814684865078781416357165377610071014801157507931
SqrtPi = 1.77245385090551602729816748334114518279754945612238712821380779
SqrtPhi = 1.27201964951406896425242246173749149171560804184009624861664038
Ln2 = 0.693147180559945309417232121458176568075500134360255254120680009
Log2E = 1.0 / Ln2
Ln10 = 2.30258509299404568401799145468436420760110148862877297603332790
Log10E = 1.0 / Ln10
)
// Returns the absolute value.
pub fn abs(a f64) f64 {
if a < 0 {
return -a
}
return a
}
// Inverse cosine.
pub fn acos(a f64) f64 {
return C.acos(a)
}
// Inverse sine.
pub fn asin(a f64) f64 {
return C.asin(a)
}
// Inverse tangent
pub fn atan(a f64) f64 {
return C.atan(a)
}
// Inverse tangent with two arguments, returns angle between the X axis and the point.
pub fn atan2(a, b f64) f64 {
return C.atan2(a, b)
}
// Cubic root.
pub fn cbrt(a f64) f64 {
return C.cbrt(a)
}
// Returns the nearest integer equal or higher to the provided value.
pub fn ceil(a f64) f64 {
return C.ceil(a)
}
// Cosine.
pub fn cos(a f64) f64 {
return C.cos(a)
}
// Hyperbolic cosine.
pub fn cosh(a f64) f64 {
return C.cosh(a)
}
// Returns euler number (e) raised to the provided power.
pub fn exp(a f64) f64 {
return C.exp(a)
}
// Returns the base-2 exponential function of x.
pub fn exp2(a f64) f64 {
return C.exp2(a)
}
// Returns the nearest integer equal or lower of the provided value.
pub fn floor(a f64) f64 {
return C.floor(a)
}
// Returns the floating-point remainder of number / denom (rounded towards zero):
pub fn fmod(a, b f64) f64 {
return C.fmod(a, b)
}
// gcd calculates greatest common (positive) divisor (or zero if x and y are both zero).
pub fn gcd(a, b int) int {
if a < 0 {
a = -a
}
if b < 0 {
b = -b
}
for b != 0 {
a %= b
if a == 0 {
return b
}
b %= a
}
return a
}
// lcm calculates least common (non-negative) multiple.
pub fn lcm(a, b int) int {
if a == 0 {
return a
}
res := a * (b / gcd(b, a))
if res < 0 {
return -res
}
return res
}
// Returns natural (base e) logarithm of the provided value.
pub fn log(a f64) f64 {
return C.log(a)
}
// Returns base 2 logarithm of the provided value.
pub fn log2(a f64) f64 {
return C.log(a) / C.log(2)
}
// Returns the common (base-10) logarithm of x.
pub fn log10(a f64) f64 {
return C.log10(a)
}
// Returns base N logarithm of the provided value.
pub fn log_n(a, b f64) f64 {
return C.log(a) / C.log(b)
}
// Returns the maximum value of the two provided.
pub fn max(a, b f64) f64 {
if a > b {
return a
}
return b
}
// Returns the minimum value of all the values provided.
pub fn min(a, b f64) f64 {
if a < b {
return a
}
return b
}
// Returns base raised to the provided power.
pub fn pow(a, b f64) f64 {
return C.pow(a, b)
}
// Radians conversion.
pub fn radians(degrees f64) f64 {
return degrees * (Pi / 180.0)
}
// Degrees conversion.
pub fn degrees(radians f64) f64 {
return radians * (180.0 / Pi)
}
// Returns the integer nearest to the provided value.
pub fn round(f f64) f64 {
return C.round(f)
}
// Sine.
pub fn sin(a f64) f64 {
return C.sin(a)
}
// Hyperbolic sine.
pub fn sinh(a f64) f64 {
return C.sinh(a)
}
// Returns square of the provided value.
pub fn sqrt(a f64) f64 {
return C.sqrt(a)
}
// Tangent.
pub fn tan(a f64) f64 {
return C.tan(a)
}
// Hyperbolic tangent.
pub fn tanh(a f64) f64 {
return C.tanh(a)
}
// Rounds a toward zero, returning the nearest integral value that is not
// larger in magnitude than a.
pub fn trunc(a f64) f64 {
return C.trunc(a)
}
// Return the factorial of the value provided.
pub fn factorial(a int) i64 {
mut prod := 1
for i:= 0; i < a; i++ {
prod = prod * (i+1)
}
return prod
}