649 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			649 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			V
		
	
	
| // Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
 | |
| // Use of this source code is governed by an MIT license
 | |
| // that can be found in the LICENSE file.
 | |
| module builtin
 | |
| 
 | |
| import strings
 | |
| 
 | |
| // array is a struct used for denoting array types in V
 | |
| pub struct array {
 | |
| pub:
 | |
| 	element_size int // size in bytes of one element in the array.
 | |
| pub mut:
 | |
| 	data   voidptr
 | |
| 	offset int // in bytes (should be `size_t`)
 | |
| 	len    int // length of the array.
 | |
| 	cap    int // capacity of the array.
 | |
| }
 | |
| 
 | |
| // array.data uses a void pointer, which allows implementing arrays without generics and without generating
 | |
| // extra code for every type.
 | |
| // Internal function, used by V (`nums := []int`)
 | |
| fn __new_array(mylen int, cap int, elm_size int) array {
 | |
| 	cap_ := if cap < mylen { mylen } else { cap }
 | |
| 	arr := array{
 | |
| 		element_size: elm_size
 | |
| 		data: vcalloc(cap_ * elm_size)
 | |
| 		len: mylen
 | |
| 		cap: cap_
 | |
| 	}
 | |
| 	return arr
 | |
| }
 | |
| 
 | |
| fn __new_array_with_default(mylen int, cap int, elm_size int, val voidptr) array {
 | |
| 	cap_ := if cap < mylen { mylen } else { cap }
 | |
| 	mut arr := array{
 | |
| 		element_size: elm_size
 | |
| 		data: vcalloc(cap_ * elm_size)
 | |
| 		len: mylen
 | |
| 		cap: cap_
 | |
| 	}
 | |
| 	if val != 0 {
 | |
| 		for i in 0 .. arr.len {
 | |
| 			unsafe { arr.set_unsafe(i, val) }
 | |
| 		}
 | |
| 	}
 | |
| 	return arr
 | |
| }
 | |
| 
 | |
| fn __new_array_with_array_default(mylen int, cap int, elm_size int, val array) array {
 | |
| 	cap_ := if cap < mylen { mylen } else { cap }
 | |
| 	mut arr := array{
 | |
| 		element_size: elm_size
 | |
| 		data: vcalloc(cap_ * elm_size)
 | |
| 		len: mylen
 | |
| 		cap: cap_
 | |
| 	}
 | |
| 	for i in 0 .. arr.len {
 | |
| 		val_clone := val.clone()
 | |
| 		unsafe { arr.set_unsafe(i, &val_clone) }
 | |
| 	}
 | |
| 	return arr
 | |
| }
 | |
| 
 | |
| // Private function, used by V (`nums := [1, 2, 3]`)
 | |
| fn new_array_from_c_array(len int, cap int, elm_size int, c_array voidptr) array {
 | |
| 	cap_ := if cap < len { len } else { cap }
 | |
| 	arr := array{
 | |
| 		element_size: elm_size
 | |
| 		data: vcalloc(cap_ * elm_size)
 | |
| 		len: len
 | |
| 		cap: cap_
 | |
| 	}
 | |
| 	// TODO Write all memory functions (like memcpy) in V
 | |
| 	unsafe { C.memcpy(arr.data, c_array, len * elm_size) }
 | |
| 	return arr
 | |
| }
 | |
| 
 | |
| // Private function, used by V (`nums := [1, 2, 3] !`)
 | |
| fn new_array_from_c_array_no_alloc(len int, cap int, elm_size int, c_array voidptr) array {
 | |
| 	arr := array{
 | |
| 		element_size: elm_size
 | |
| 		data: c_array
 | |
| 		len: len
 | |
| 		cap: cap
 | |
| 	}
 | |
| 	return arr
 | |
| }
 | |
| 
 | |
| // Private function. Doubles array capacity if needed.
 | |
| fn (mut a array) ensure_cap(required int) {
 | |
| 	if required <= a.cap {
 | |
| 		return
 | |
| 	}
 | |
| 	mut cap := if a.cap > 0 { a.cap } else { 2 }
 | |
| 	for required > cap {
 | |
| 		cap *= 2
 | |
| 	}
 | |
| 	new_size := cap * a.element_size
 | |
| 	new_data := vcalloc(new_size)
 | |
| 	if a.data != voidptr(0) {
 | |
| 		unsafe { C.memcpy(new_data, a.data, a.len * a.element_size) }
 | |
| 		// TODO: the old data may be leaked when no GC is used (ref-counting?)
 | |
| 	}
 | |
| 	a.data = new_data
 | |
| 	a.offset = 0
 | |
| 	a.cap = cap
 | |
| }
 | |
| 
 | |
| // repeat returns a new array with the given array elements repeated given times.
 | |
| // `cgen` will replace this with an apropriate call to `repeat_to_depth()`
 | |
| 
 | |
| // This is a dummy placeholder that will be overridden by `cgen` with an appropriate
 | |
| // call to `repeat_to_depth()`. However the `checker` needs it here.
 | |
| pub fn (a array) repeat(count int) array {
 | |
| 	return unsafe { a.repeat_to_depth(count, 0) }
 | |
| }
 | |
| 
 | |
| // version of `repeat()` that handles multi dimensional arrays
 | |
| // `unsafe` to call directly because `depth` is not checked
 | |
| [unsafe]
 | |
| pub fn (a array) repeat_to_depth(count int, depth int) array {
 | |
| 	if count < 0 {
 | |
| 		panic('array.repeat: count is negative: $count')
 | |
| 	}
 | |
| 	mut size := count * a.len * a.element_size
 | |
| 	if size == 0 {
 | |
| 		size = a.element_size
 | |
| 	}
 | |
| 	arr := array{
 | |
| 		element_size: a.element_size
 | |
| 		data: vcalloc(size)
 | |
| 		len: count * a.len
 | |
| 		cap: count * a.len
 | |
| 	}
 | |
| 	if a.len > 0 {
 | |
| 		for i in 0 .. count {
 | |
| 			if depth > 0 {
 | |
| 				ary_clone := unsafe { a.clone_to_depth(depth) }
 | |
| 				unsafe { C.memcpy(arr.get_unsafe(i * a.len), &byte(ary_clone.data), a.len * a.element_size) }
 | |
| 			} else {
 | |
| 				unsafe { C.memcpy(arr.get_unsafe(i * a.len), &byte(a.data), a.len * a.element_size) }
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return arr
 | |
| }
 | |
| 
 | |
| // sort_with_compare sorts array in-place using given `compare` function as comparator.
 | |
| pub fn (mut a array) sort_with_compare(compare voidptr) {
 | |
| 	$if freestanding {
 | |
| 		panic('sort does not work with -freestanding')
 | |
| 	} $else {
 | |
| 		C.qsort(mut a.data, a.len, a.element_size, compare)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // insert inserts a value in the array at index `i`
 | |
| pub fn (mut a array) insert(i int, val voidptr) {
 | |
| 	$if !no_bounds_checking ? {
 | |
| 		if i < 0 || i > a.len {
 | |
| 			panic('array.insert: index out of range (i == $i, a.len == $a.len)')
 | |
| 		}
 | |
| 	}
 | |
| 	a.ensure_cap(a.len + 1)
 | |
| 	unsafe {
 | |
| 		C.memmove(a.get_unsafe(i + 1), a.get_unsafe(i), (a.len - i) * a.element_size)
 | |
| 		a.set_unsafe(i, val)
 | |
| 	}
 | |
| 	a.len++
 | |
| }
 | |
| 
 | |
| // insert_many inserts many values into the array from index `i`.
 | |
| [unsafe]
 | |
| pub fn (mut a array) insert_many(i int, val voidptr, size int) {
 | |
| 	$if !no_bounds_checking ? {
 | |
| 		if i < 0 || i > a.len {
 | |
| 			panic('array.insert_many: index out of range (i == $i, a.len == $a.len)')
 | |
| 		}
 | |
| 	}
 | |
| 	a.ensure_cap(a.len + size)
 | |
| 	elem_size := a.element_size
 | |
| 	unsafe {
 | |
| 		iptr := a.get_unsafe(i)
 | |
| 		C.memmove(a.get_unsafe(i + size), iptr, (a.len - i) * elem_size)
 | |
| 		C.memcpy(iptr, val, size * elem_size)
 | |
| 	}
 | |
| 	a.len += size
 | |
| }
 | |
| 
 | |
| // prepend prepends one value to the array.
 | |
| pub fn (mut a array) prepend(val voidptr) {
 | |
| 	a.insert(0, val)
 | |
| }
 | |
| 
 | |
| // prepend_many prepends another array to this array.
 | |
| [unsafe]
 | |
| pub fn (mut a array) prepend_many(val voidptr, size int) {
 | |
| 	unsafe { a.insert_many(0, val, size) }
 | |
| }
 | |
| 
 | |
| // delete deletes array element at index `i`.
 | |
| pub fn (mut a array) delete(i int) {
 | |
| 	$if !no_bounds_checking ? {
 | |
| 		if i < 0 || i >= a.len {
 | |
| 			panic('array.delete: index out of range (i == $i, a.len == $a.len)')
 | |
| 		}
 | |
| 	}
 | |
| 	// NB: if a is [12,34], a.len = 2, a.delete(0)
 | |
| 	// should move (2-0-1) elements = 1 element (the 34) forward
 | |
| 	unsafe { C.memmove(a.get_unsafe(i), a.get_unsafe(i + 1), (a.len - i - 1) * a.element_size) }
 | |
| 	a.len--
 | |
| }
 | |
| 
 | |
| // clear clears the array without deallocating the allocated data.
 | |
| pub fn (mut a array) clear() {
 | |
| 	a.len = 0
 | |
| }
 | |
| 
 | |
| // trim trims the array length to "index" without modifying the allocated data. If "index" is greater
 | |
| // than len nothing will be changed.
 | |
| pub fn (mut a array) trim(index int) {
 | |
| 	if index < a.len {
 | |
| 		a.len = index
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // we manually inline this for single operations for performance without -prod
 | |
| [inline; unsafe]
 | |
| fn (a array) get_unsafe(i int) voidptr {
 | |
| 	unsafe {
 | |
| 		return &byte(a.data) + i * a.element_size
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Private function. Used to implement array[] operator.
 | |
| fn (a array) get(i int) voidptr {
 | |
| 	$if !no_bounds_checking ? {
 | |
| 		if i < 0 || i >= a.len {
 | |
| 			panic('array.get: index out of range (i == $i, a.len == $a.len)')
 | |
| 		}
 | |
| 	}
 | |
| 	unsafe {
 | |
| 		return &byte(a.data) + i * a.element_size
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Private function. Used to implement x = a[i] or { ... }
 | |
| fn (a array) get_with_check(i int) voidptr {
 | |
| 	if i < 0 || i >= a.len {
 | |
| 		return 0
 | |
| 	}
 | |
| 	unsafe {
 | |
| 		return &byte(a.data) + i * a.element_size
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // first returns the first element of the array.
 | |
| pub fn (a array) first() voidptr {
 | |
| 	$if !no_bounds_checking ? {
 | |
| 		if a.len == 0 {
 | |
| 			panic('array.first: array is empty')
 | |
| 		}
 | |
| 	}
 | |
| 	return a.data
 | |
| }
 | |
| 
 | |
| // last returns the last element of the array.
 | |
| pub fn (a array) last() voidptr {
 | |
| 	$if !no_bounds_checking ? {
 | |
| 		if a.len == 0 {
 | |
| 			panic('array.last: array is empty')
 | |
| 		}
 | |
| 	}
 | |
| 	unsafe {
 | |
| 		return &byte(a.data) + (a.len - 1) * a.element_size
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // pop returns the last element of the array, and removes it.
 | |
| pub fn (mut a array) pop() voidptr {
 | |
| 	// in a sense, this is the opposite of `a << x`
 | |
| 	$if !no_bounds_checking ? {
 | |
| 		if a.len == 0 {
 | |
| 			panic('array.pop: array is empty')
 | |
| 		}
 | |
| 	}
 | |
| 	new_len := a.len - 1
 | |
| 	last_elem := unsafe { &byte(a.data) + new_len * a.element_size }
 | |
| 	a.len = new_len
 | |
| 	// NB: a.cap is not changed here *on purpose*, so that
 | |
| 	// further << ops on that array will be more efficient.
 | |
| 	return unsafe { memdup(last_elem, a.element_size) }
 | |
| }
 | |
| 
 | |
| // delete_last efficiently deletes the last element of the array.
 | |
| pub fn (mut a array) delete_last() {
 | |
| 	// copy pasting code for performance
 | |
| 	$if !no_bounds_checking ? {
 | |
| 		if a.len == 0 {
 | |
| 			panic('array.pop: array is empty')
 | |
| 		}
 | |
| 	}
 | |
| 	a.len--
 | |
| }
 | |
| 
 | |
| // slice returns an array using the same buffer as original array
 | |
| // but starting from the `start` element and ending with the element before
 | |
| // the `end` element of the original array with the length and capacity
 | |
| // set to the number of the elements in the slice.
 | |
| fn (a array) slice(start int, _end int) array {
 | |
| 	mut end := _end
 | |
| 	$if !no_bounds_checking ? {
 | |
| 		if start > end {
 | |
| 			panic('array.slice: invalid slice index ($start > $end)')
 | |
| 		}
 | |
| 		if end > a.len {
 | |
| 			panic('array.slice: slice bounds out of range ($end >= $a.len)')
 | |
| 		}
 | |
| 		if start < 0 {
 | |
| 			panic('array.slice: slice bounds out of range ($start < 0)')
 | |
| 		}
 | |
| 	}
 | |
| 	offset := start * a.element_size
 | |
| 	data := unsafe { &byte(a.data) + offset }
 | |
| 	l := end - start
 | |
| 	res := array{
 | |
| 		element_size: a.element_size
 | |
| 		data: data
 | |
| 		offset: a.offset + offset
 | |
| 		len: l
 | |
| 		cap: l
 | |
| 	}
 | |
| 	return res
 | |
| }
 | |
| 
 | |
| // used internally for [2..4]
 | |
| fn (a array) slice2(start int, _end int, end_max bool) array {
 | |
| 	end := if end_max { a.len } else { _end }
 | |
| 	return a.slice(start, end)
 | |
| }
 | |
| 
 | |
| // `clone_static_to_depth()` returns an independent copy of a given array.
 | |
| // Unlike `clone_to_depth()` it has a value receiver and is used internally
 | |
| // for slice-clone expressions like `a[2..4].clone()` and in -autofree generated code.
 | |
| fn (a array) clone_static_to_depth(depth int) array {
 | |
| 	return unsafe { a.clone_to_depth(depth) }
 | |
| }
 | |
| 
 | |
| // clone returns an independent copy of a given array.
 | |
| // this will be overwritten by `cgen` with an apropriate call to `.clone_to_depth()`
 | |
| // However the `checker` needs it here.
 | |
| pub fn (a &array) clone() array {
 | |
| 	return unsafe { a.clone_to_depth(0) }
 | |
| }
 | |
| 
 | |
| // recursively clone given array - `unsafe` when called directly because depth is not checked
 | |
| [unsafe]
 | |
| pub fn (a &array) clone_to_depth(depth int) array {
 | |
| 	mut size := a.cap * a.element_size
 | |
| 	if size == 0 {
 | |
| 		size++
 | |
| 	}
 | |
| 	mut arr := array{
 | |
| 		element_size: a.element_size
 | |
| 		data: vcalloc(size)
 | |
| 		len: a.len
 | |
| 		cap: a.cap
 | |
| 	}
 | |
| 	// Recursively clone-generated elements if array element is array type
 | |
| 	if depth > 0 {
 | |
| 		for i in 0 .. a.len {
 | |
| 			ar := array{}
 | |
| 			unsafe { C.memcpy(&ar, a.get_unsafe(i), int(sizeof(array))) }
 | |
| 			ar_clone := unsafe { ar.clone_to_depth(depth - 1) }
 | |
| 			unsafe { arr.set_unsafe(i, &ar_clone) }
 | |
| 		}
 | |
| 		return arr
 | |
| 	} else {
 | |
| 		if !isnil(a.data) {
 | |
| 			unsafe { C.memcpy(&byte(arr.data), a.data, a.cap * a.element_size) }
 | |
| 		}
 | |
| 		return arr
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // we manually inline this for single operations for performance without -prod
 | |
| [inline; unsafe]
 | |
| fn (mut a array) set_unsafe(i int, val voidptr) {
 | |
| 	unsafe { C.memcpy(&byte(a.data) + a.element_size * i, val, a.element_size) }
 | |
| }
 | |
| 
 | |
| // Private function. Used to implement assigment to the array element.
 | |
| fn (mut a array) set(i int, val voidptr) {
 | |
| 	$if !no_bounds_checking ? {
 | |
| 		if i < 0 || i >= a.len {
 | |
| 			panic('array.set: index out of range (i == $i, a.len == $a.len)')
 | |
| 		}
 | |
| 	}
 | |
| 	unsafe { C.memcpy(&byte(a.data) + a.element_size * i, val, a.element_size) }
 | |
| }
 | |
| 
 | |
| fn (mut a array) push(val voidptr) {
 | |
| 	a.ensure_cap(a.len + 1)
 | |
| 	unsafe { C.memmove(&byte(a.data) + a.element_size * a.len, val, a.element_size) }
 | |
| 	a.len++
 | |
| }
 | |
| 
 | |
| // push_many implements the functionality for pushing another array.
 | |
| // `val` is array.data and user facing usage is `a << [1,2,3]`
 | |
| [unsafe]
 | |
| pub fn (mut a3 array) push_many(val voidptr, size int) {
 | |
| 	if a3.data == val && !isnil(a3.data) {
 | |
| 		// handle `arr << arr`
 | |
| 		copy := a3.clone()
 | |
| 		a3.ensure_cap(a3.len + size)
 | |
| 		unsafe {
 | |
| 			// C.memcpy(a.data, copy.data, copy.element_size * copy.len)
 | |
| 			C.memcpy(a3.get_unsafe(a3.len), copy.data, a3.element_size * size)
 | |
| 		}
 | |
| 	} else {
 | |
| 		a3.ensure_cap(a3.len + size)
 | |
| 		if !isnil(a3.data) && !isnil(val) {
 | |
| 			unsafe { C.memcpy(a3.get_unsafe(a3.len), val, a3.element_size * size) }
 | |
| 		}
 | |
| 	}
 | |
| 	a3.len += size
 | |
| }
 | |
| 
 | |
| // reverse_in_place reverses existing array data, modifying original array.
 | |
| pub fn (mut a array) reverse_in_place() {
 | |
| 	if a.len < 2 {
 | |
| 		return
 | |
| 	}
 | |
| 	unsafe {
 | |
| 		mut tmp_value := malloc(a.element_size)
 | |
| 		for i in 0 .. a.len / 2 {
 | |
| 			C.memcpy(tmp_value, &byte(a.data) + i * a.element_size, a.element_size)
 | |
| 			C.memcpy(&byte(a.data) + i * a.element_size, &byte(a.data) +
 | |
| 				(a.len - 1 - i) * a.element_size, a.element_size)
 | |
| 			C.memcpy(&byte(a.data) + (a.len - 1 - i) * a.element_size, tmp_value, a.element_size)
 | |
| 		}
 | |
| 		free(tmp_value)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // reverse returns a new array with the elements of the original array in reverse order.
 | |
| pub fn (a array) reverse() array {
 | |
| 	if a.len < 2 {
 | |
| 		return a
 | |
| 	}
 | |
| 	mut arr := array{
 | |
| 		element_size: a.element_size
 | |
| 		data: vcalloc(a.cap * a.element_size)
 | |
| 		len: a.len
 | |
| 		cap: a.cap
 | |
| 	}
 | |
| 	for i in 0 .. a.len {
 | |
| 		unsafe { arr.set_unsafe(i, a.get_unsafe(a.len - 1 - i)) }
 | |
| 	}
 | |
| 	return arr
 | |
| }
 | |
| 
 | |
| // pub fn (a []int) free() {
 | |
| // free frees all memory occupied by the array.
 | |
| [unsafe]
 | |
| pub fn (a &array) free() {
 | |
| 	$if prealloc {
 | |
| 		return
 | |
| 	}
 | |
| 	// if a.is_slice {
 | |
| 	// return
 | |
| 	// }
 | |
| 	unsafe { free(&byte(a.data) - a.offset) }
 | |
| }
 | |
| 
 | |
| [unsafe]
 | |
| pub fn (mut a []string) free() {
 | |
| 	$if prealloc {
 | |
| 		return
 | |
| 	}
 | |
| 	for s in a {
 | |
| 		unsafe { s.free() }
 | |
| 	}
 | |
| 	unsafe { free(a.data) }
 | |
| }
 | |
| 
 | |
| // str returns a string representation of the array of strings
 | |
| // => '["a", "b", "c"]'.
 | |
| [manualfree]
 | |
| pub fn (a []string) str() string {
 | |
| 	mut sb := strings.new_builder(a.len * 3)
 | |
| 	sb.write_string('[')
 | |
| 	for i in 0 .. a.len {
 | |
| 		val := a[i]
 | |
| 		sb.write_string("'")
 | |
| 		sb.write_string(val)
 | |
| 		sb.write_string("'")
 | |
| 		if i < a.len - 1 {
 | |
| 			sb.write_string(', ')
 | |
| 		}
 | |
| 	}
 | |
| 	sb.write_string(']')
 | |
| 	res := sb.str()
 | |
| 	unsafe { sb.free() }
 | |
| 	return res
 | |
| }
 | |
| 
 | |
| // hex returns a string with the hexadecimal representation
 | |
| // of the byte elements of the array.
 | |
| pub fn (b []byte) hex() string {
 | |
| 	mut hex := unsafe { malloc(b.len * 2 + 1) }
 | |
| 	mut dst_i := 0
 | |
| 	for i in b {
 | |
| 		n0 := i >> 4
 | |
| 		unsafe {
 | |
| 			hex[dst_i] = if n0 < 10 { n0 + `0` } else { n0 + byte(87) }
 | |
| 			dst_i++
 | |
| 		}
 | |
| 		n1 := i & 0xF
 | |
| 		unsafe {
 | |
| 			hex[dst_i] = if n1 < 10 { n1 + `0` } else { n1 + byte(87) }
 | |
| 			dst_i++
 | |
| 		}
 | |
| 	}
 | |
| 	unsafe {
 | |
| 		hex[dst_i] = 0
 | |
| 		return tos(hex, dst_i)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // copy copies the `src` byte array elements to the `dst` byte array.
 | |
| // The number of the elements copied is the minimum of the length of both arrays.
 | |
| // Returns the number of elements copied.
 | |
| // TODO: implement for all types
 | |
| pub fn copy(dst []byte, src []byte) int {
 | |
| 	min := if dst.len < src.len { dst.len } else { src.len }
 | |
| 	if min > 0 {
 | |
| 		unsafe { C.memcpy(&byte(dst.data), src.data, min) }
 | |
| 	}
 | |
| 	return min
 | |
| }
 | |
| 
 | |
| // Private function. Comparator for int type.
 | |
| fn compare_ints(a &int, b &int) int {
 | |
| 	if *a < *b {
 | |
| 		return -1
 | |
| 	}
 | |
| 	if *a > *b {
 | |
| 		return 1
 | |
| 	}
 | |
| 	return 0
 | |
| }
 | |
| 
 | |
| fn compare_ints_reverse(a &int, b &int) int {
 | |
| 	if *a > *b {
 | |
| 		return -1
 | |
| 	}
 | |
| 	if *a < *b {
 | |
| 		return 1
 | |
| 	}
 | |
| 	return 0
 | |
| }
 | |
| 
 | |
| // sort sorts an array of int in place in ascending order.
 | |
| pub fn (mut a []int) sort() {
 | |
| 	a.sort_with_compare(compare_ints)
 | |
| }
 | |
| 
 | |
| // index returns the first index at which a given element can be found in the array
 | |
| // or -1 if the value is not found.
 | |
| pub fn (a []string) index(v string) int {
 | |
| 	for i in 0 .. a.len {
 | |
| 		if a[i] == v {
 | |
| 			return i
 | |
| 		}
 | |
| 	}
 | |
| 	return -1
 | |
| }
 | |
| 
 | |
| // reduce executes a given reducer function on each element of the array,
 | |
| // resulting in a single output value.
 | |
| pub fn (a []int) reduce(iter fn (int, int) int, accum_start int) int {
 | |
| 	mut accum_ := accum_start
 | |
| 	for i in a {
 | |
| 		accum_ = iter(accum_, i)
 | |
| 	}
 | |
| 	return accum_
 | |
| }
 | |
| 
 | |
| // grow_cap grows the array's capacity by `amount` elements.
 | |
| pub fn (mut a array) grow_cap(amount int) {
 | |
| 	a.ensure_cap(a.cap + amount)
 | |
| }
 | |
| 
 | |
| // grow_len ensures that an array has a.len + amount of length
 | |
| [unsafe]
 | |
| pub fn (mut a array) grow_len(amount int) {
 | |
| 	a.ensure_cap(a.len + amount)
 | |
| 	a.len += amount
 | |
| }
 | |
| 
 | |
| // eq checks if the arrays have the same elements or not.
 | |
| // TODO: make it work with all types.
 | |
| pub fn (a1 []string) eq(a2 []string) bool {
 | |
| 	// return array_eq(a, a2)
 | |
| 	if a1.len != a2.len {
 | |
| 		return false
 | |
| 	}
 | |
| 	size_of_string := int(sizeof(string))
 | |
| 	for i in 0 .. a1.len {
 | |
| 		offset := i * size_of_string
 | |
| 		s1 := unsafe { &string(&byte(a1.data) + offset) }
 | |
| 		s2 := unsafe { &string(&byte(a2.data) + offset) }
 | |
| 		if *s1 != *s2 {
 | |
| 			return false
 | |
| 		}
 | |
| 	}
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| // pointers returns a new array, where each element
 | |
| // is the address of the corresponding element in the array.
 | |
| [unsafe]
 | |
| pub fn (a array) pointers() []voidptr {
 | |
| 	mut res := []voidptr{}
 | |
| 	for i in 0 .. a.len {
 | |
| 		unsafe { res << a.get_unsafe(i) }
 | |
| 	}
 | |
| 	return res
 | |
| }
 | |
| 
 | |
| // voidptr.vbytes() - makes a V []byte structure from a C style memory buffer. NB: the data is reused, NOT copied!
 | |
| [unsafe]
 | |
| pub fn (data voidptr) vbytes(len int) []byte {
 | |
| 	res := array{
 | |
| 		element_size: 1
 | |
| 		data: data
 | |
| 		len: len
 | |
| 		cap: len
 | |
| 	}
 | |
| 	return res
 | |
| }
 | |
| 
 | |
| // byteptr.vbytes() - makes a V []byte structure from a C style memory buffer. NB: the data is reused, NOT copied!
 | |
| [unsafe]
 | |
| pub fn (data &byte) vbytes(len int) []byte {
 | |
| 	return unsafe { voidptr(data).vbytes(len) }
 | |
| }
 |