206 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			206 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			V
		
	
	
| // Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
 | |
| // Use of this source code is governed by an MIT license that can be found in the LICENSE file.
 | |
| module builtin
 | |
| 
 | |
| import strconv
 | |
| 
 | |
| #include <float.h>
 | |
| /*
 | |
| -----------------------------------
 | |
| ----- f64 to string functions -----
 | |
| */
 | |
| // str return a `f64` as `string` in suitable notation.
 | |
| [inline]
 | |
| pub fn (x f64) str() string {
 | |
| 	unsafe {
 | |
| 		f := strconv.Float64u{
 | |
| 			f: x
 | |
| 		}
 | |
| 		if f.u == strconv.double_minus_zero {
 | |
| 			return '-0'
 | |
| 		}
 | |
| 		if f.u == strconv.double_plus_zero {
 | |
| 			return '0'
 | |
| 		}
 | |
| 	}
 | |
| 	abs_x := f64_abs(x)
 | |
| 	if abs_x >= 0.0001 && abs_x < 1.0e6 {
 | |
| 		return strconv.f64_to_str_l(x)
 | |
| 	} else {
 | |
| 		return strconv.ftoa_64(x)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // strg return a `f64` as `string` in "g" printf format
 | |
| [inline]
 | |
| pub fn (x f64) strg() string {
 | |
| 	if x == 0 {
 | |
| 		return '0'
 | |
| 	}
 | |
| 	abs_x := f64_abs(x)
 | |
| 	if abs_x >= 0.0001 && abs_x < 1.0e6 {
 | |
| 		return strconv.f64_to_str_l_no_dot(x)
 | |
| 	} else {
 | |
| 		return strconv.ftoa_64(x)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // str returns the value of the `float_literal` as a `string`.
 | |
| [inline]
 | |
| pub fn (d float_literal) str() string {
 | |
| 	return f64(d).str()
 | |
| }
 | |
| 
 | |
| // strsci returns the `f64` as a `string` in scientific notation with `digit_num` decimals displayed, max 17 digits.
 | |
| // Example: assert f64(1.234).strsci(3) == '1.234e+00'
 | |
| [inline]
 | |
| pub fn (x f64) strsci(digit_num int) string {
 | |
| 	mut n_digit := digit_num
 | |
| 	if n_digit < 1 {
 | |
| 		n_digit = 1
 | |
| 	} else if n_digit > 17 {
 | |
| 		n_digit = 17
 | |
| 	}
 | |
| 	return strconv.f64_to_str(x, n_digit)
 | |
| }
 | |
| 
 | |
| // strlong returns a decimal notation of the `f64` as a `string`.
 | |
| // Example: assert f64(1.23456).strlong() == '1.23456'
 | |
| [inline]
 | |
| pub fn (x f64) strlong() string {
 | |
| 	return strconv.f64_to_str_l(x)
 | |
| }
 | |
| 
 | |
| /*
 | |
| -----------------------------------
 | |
| ----- f32 to string functions -----
 | |
| */
 | |
| // str returns a `f32` as `string` in suitable notation.
 | |
| [inline]
 | |
| pub fn (x f32) str() string {
 | |
| 	unsafe {
 | |
| 		f := strconv.Float32u{
 | |
| 			f: x
 | |
| 		}
 | |
| 		if f.u == strconv.single_minus_zero {
 | |
| 			return '-0'
 | |
| 		}
 | |
| 		if f.u == strconv.single_plus_zero {
 | |
| 			return '0'
 | |
| 		}
 | |
| 	}
 | |
| 	abs_x := f32_abs(x)
 | |
| 	if abs_x >= 0.0001 && abs_x < 1.0e6 {
 | |
| 		return strconv.f32_to_str_l(x)
 | |
| 	} else {
 | |
| 		return strconv.ftoa_32(x)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // strg return a `f32` as `string` in "g" printf format
 | |
| [inline]
 | |
| pub fn (x f32) strg() string {
 | |
| 	if x == 0 {
 | |
| 		return '0'
 | |
| 	}
 | |
| 	abs_x := f32_abs(x)
 | |
| 	if abs_x >= 0.0001 && abs_x < 1.0e6 {
 | |
| 		return strconv.f32_to_str_l_no_dot(x)
 | |
| 	} else {
 | |
| 		return strconv.ftoa_32(x)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // strsci returns the `f32` as a `string` in scientific notation with `digit_num` deciamals displayed, max 8 digits.
 | |
| // Example: assert f32(1.234).strsci(3) == '1.234e+00'
 | |
| [inline]
 | |
| pub fn (x f32) strsci(digit_num int) string {
 | |
| 	mut n_digit := digit_num
 | |
| 	if n_digit < 1 {
 | |
| 		n_digit = 1
 | |
| 	} else if n_digit > 8 {
 | |
| 		n_digit = 8
 | |
| 	}
 | |
| 	return strconv.f32_to_str(x, n_digit)
 | |
| }
 | |
| 
 | |
| // strlong returns a decimal notation of the `f32` as a `string`.
 | |
| [inline]
 | |
| pub fn (x f32) strlong() string {
 | |
| 	return strconv.f32_to_str_l(x)
 | |
| }
 | |
| 
 | |
| /*
 | |
| -----------------------
 | |
| ----- C functions -----
 | |
| */
 | |
| // f32_abs returns the absolute value of `a` as a `f32` value.
 | |
| // Example: assert f32_abs(-2.0) == 2.0
 | |
| [inline]
 | |
| pub fn f32_abs(a f32) f32 {
 | |
| 	return if a < 0 { -a } else { a }
 | |
| }
 | |
| 
 | |
| // f64_abs returns the absolute value of `a` as a `f64` value.
 | |
| // Example: assert f64_abs(-2.0) == f64(2.0)
 | |
| [inline]
 | |
| fn f64_abs(a f64) f64 {
 | |
| 	return if a < 0 { -a } else { a }
 | |
| }
 | |
| 
 | |
| // f32_max returns the largest `f32` of input `a` and `b`.
 | |
| // Example: assert f32_max(2.0,3.0) == 3.0
 | |
| [inline]
 | |
| pub fn f32_max(a f32, b f32) f32 {
 | |
| 	return if a > b { a } else { b }
 | |
| }
 | |
| 
 | |
| // f32_min returns the smallest `f32` of input `a` and `b`.
 | |
| // Example: assert f32_min(2.0,3.0) == 2.0
 | |
| [inline]
 | |
| pub fn f32_min(a f32, b f32) f32 {
 | |
| 	return if a < b { a } else { b }
 | |
| }
 | |
| 
 | |
| // f64_max returns the largest `f64` of input `a` and `b`.
 | |
| // Example: assert f64_max(2.0,3.0) == 3.0
 | |
| [inline]
 | |
| pub fn f64_max(a f64, b f64) f64 {
 | |
| 	return if a > b { a } else { b }
 | |
| }
 | |
| 
 | |
| // f64_min returns the smallest `f64` of input `a` and `b`.
 | |
| // Example: assert f64_min(2.0,3.0) == 2.0
 | |
| [inline]
 | |
| fn f64_min(a f64, b f64) f64 {
 | |
| 	return if a < b { a } else { b }
 | |
| }
 | |
| 
 | |
| // eq_epsilon returns true if the `f32` is equal to input `b`.
 | |
| // using an epsilon of typically 1E-5 or higher (backend/compiler dependent).
 | |
| // Example: assert f32(2.0).eq_epsilon(2.0)
 | |
| [inline]
 | |
| pub fn (a f32) eq_epsilon(b f32) bool {
 | |
| 	hi := f32_max(f32_abs(a), f32_abs(b))
 | |
| 	delta := f32_abs(a - b)
 | |
| 	if hi > f32(1.0) {
 | |
| 		return delta <= hi * (4 * f32(C.FLT_EPSILON))
 | |
| 	} else {
 | |
| 		return (1 / (4 * f32(C.FLT_EPSILON))) * delta <= hi
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // eq_epsilon returns true if the `f64` is equal to input `b`.
 | |
| // using an epsilon of typically 1E-9 or higher (backend/compiler dependent).
 | |
| // Example: assert f64(2.0).eq_epsilon(2.0)
 | |
| [inline]
 | |
| pub fn (a f64) eq_epsilon(b f64) bool {
 | |
| 	hi := f64_max(f64_abs(a), f64_abs(b))
 | |
| 	delta := f64_abs(a - b)
 | |
| 	if hi > 1.0 {
 | |
| 		return delta <= hi * (4 * f64(C.DBL_EPSILON))
 | |
| 	} else {
 | |
| 		return (1 / (4 * f64(C.DBL_EPSILON))) * delta <= hi
 | |
| 	}
 | |
| }
 |