205 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			205 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			V
		
	
	
| module edwards25519
 | |
| 
 | |
| import os
 | |
| import rand
 | |
| import encoding.hex
 | |
| 
 | |
| const github_job = os.getenv('GITHUB_JOB')
 | |
| 
 | |
| fn testsuite_begin() {
 | |
| 	if edwards25519.github_job != '' {
 | |
| 		// ensure that the CI does not run flaky tests:
 | |
| 		rand.seed([u32(0xffff24), 0xabcd])
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // test_bytes_montgomery tests the set_bytes_with_clamping+bytes_montgomery path
 | |
| // equivalence to curve25519.X25519 for basepoint scalar multiplications.
 | |
| //
 | |
| // Note that you can't actually implement X25519 with this package because
 | |
| // there is no SetBytesMontgomery, and it would not be possible to implement
 | |
| // it properly: points on the twist would get rejected, and the Scalar returned
 | |
| // by set_bytes_with_clamping does not preserve its cofactor-clearing properties.
 | |
| //
 | |
| // Disabled curve25519 not available yet, but maybe can use own curve25519
 | |
| /*
 | |
| fn fn_mon(scalar [32]byte) bool {
 | |
|                mut s := new_scalar().set_bytes_with_clamping(scalar[..])
 | |
|                p := (&Point{}).scalar_base_mult(s)
 | |
|                got := p.bytes_montgomery()
 | |
|                want, _ := curve25519.X25519(scalar[..], curve25519.Basepoint)
 | |
|                return bytes.equal(got, want)
 | |
|        }
 | |
| 
 | |
| fn test_bytes_montgomery() {
 | |
|        /* f := fn(scalar [32]byte) bool {
 | |
|                s := new_scalar().set_bytes_with_clamping(scalar[..])
 | |
|                p := (&Point{}).scalar_base_mult(s)
 | |
|                got := p.bytes_montgomery()
 | |
|                want, _ := curve25519.X25519(scalar[..], curve25519.Basepoint)
 | |
|                return bytes.equal(got, want)
 | |
|        } */
 | |
|        if err := quick.Check(f, nil); err != nil {
 | |
|                t.Error(err)
 | |
|        }
 | |
| }*/
 | |
| 
 | |
| fn test_bytes_montgomery_sodium() ? {
 | |
| 	// Generated with libsodium.js 1.0.18
 | |
| 	// crypto_sign_keypair().pubkey
 | |
| 	pubkey := '3bf918ffc2c955dc895bf145f566fb96623c1cadbe040091175764b5fde322c0'
 | |
| 	mut p := Point{}
 | |
| 	p.set_bytes(hex.decode(pubkey) ?) ?
 | |
| 
 | |
| 	// crypto_sign_ed25519_pk_to_curve25519(pubkey)
 | |
| 	want := 'efc6c9d0738e9ea18d738ad4a2653631558931b0f1fde4dd58c436d19686dc28'
 | |
| 	got := hex.encode(p.bytes_montgomery())
 | |
| 	assert got == want
 | |
| }
 | |
| 
 | |
| fn test_bytes_montgomery_infinity() {
 | |
| 	mut p := new_identity_point()
 | |
| 	want := '0000000000000000000000000000000000000000000000000000000000000000'
 | |
| 	got := hex.encode(p.bytes_montgomery())
 | |
| 
 | |
| 	assert got == want
 | |
| }
 | |
| 
 | |
| const (
 | |
| 	loworder_string = '26e8958fc2b227b045c3f489f2ef98f0d5dfac05d3c63339b13802886d53fc85'
 | |
| 	loworder_bytes  = hex.decode(loworder_string) or { panic(err) }
 | |
| )
 | |
| 
 | |
| fn fn_cofactor(mut data []byte) bool {
 | |
| 	if data.len != 64 {
 | |
| 		panic('data.len should be 64')
 | |
| 	}
 | |
| 	mut loworder := Point{}
 | |
| 	loworder.set_bytes(edwards25519.loworder_bytes) or { panic(err) }
 | |
| 
 | |
| 	mut s := new_scalar()
 | |
| 	mut p := Point{}
 | |
| 	mut p8 := Point{}
 | |
| 	s.set_uniform_bytes(data) or { panic(err) }
 | |
| 	p.scalar_base_mult(mut s)
 | |
| 	p8.mult_by_cofactor(p)
 | |
| 
 | |
| 	assert check_on_curve(p8) == true
 | |
| 
 | |
| 	// 8 * p == (8 * s) * B
 | |
| 	mut sc := Scalar{
 | |
| 		s: [32]byte{}
 | |
| 	}
 | |
| 	sc.s[0] = byte(0x08)
 | |
| 	s.multiply(s, sc)
 | |
| 	mut pp := Point{}
 | |
| 	pp.scalar_base_mult(mut s)
 | |
| 	if p8.equal(pp) != 1 {
 | |
| 		return false
 | |
| 	}
 | |
| 
 | |
| 	// 8 * p == 8 * (loworder + p)
 | |
| 	pp.add(p, loworder)
 | |
| 	pp.mult_by_cofactor(pp)
 | |
| 	if p8.equal(pp) != 1 {
 | |
| 		return false
 | |
| 	}
 | |
| 
 | |
| 	// 8 * p == p + p + p + p + p + p + p + p
 | |
| 	pp.set(new_identity_point())
 | |
| 	for i := 0; i < 8; i++ {
 | |
| 		pp.add(pp, p)
 | |
| 	}
 | |
| 	return p8.equal(pp) == 1
 | |
| }
 | |
| 
 | |
| fn test_mult_by_cofactor() ? {
 | |
| 	mut loworder := Point{}
 | |
| 	mut data := rand.bytes(64) ?
 | |
| 
 | |
| 	assert fn_cofactor(mut data) == true
 | |
| }
 | |
| 
 | |
| fn invert_works(mut xinv Scalar, x NotZeroScalar) bool {
 | |
| 	xinv.invert(x)
 | |
| 	mut check := Scalar{}
 | |
| 	check.multiply(x, xinv)
 | |
| 	return check == sc_one && is_reduced(xinv)
 | |
| }
 | |
| 
 | |
| fn test_scalar_invert() {
 | |
| 	nsc := generate_notzero_scalar(5) or { panic(err) }
 | |
| 	mut xsc := generate_scalar(5) or { panic(err) }
 | |
| 	assert invert_works(mut xsc, nsc) == true
 | |
| 
 | |
| 	mut zero := new_scalar()
 | |
| 	mut xx := new_scalar()
 | |
| 	xx.invert(zero)
 | |
| 	assert xx.equal(zero) == 1
 | |
| }
 | |
| 
 | |
| fn test_multiscalarmultmatchesbasemult() {
 | |
| 	for i in 0 .. 6 {
 | |
| 		x := generate_scalar(100) or { panic(err) }
 | |
| 		y := generate_scalar(5) or { panic(err) }
 | |
| 		z := generate_scalar(2) or { panic(err) }
 | |
| 		assert multiscalarmultmatchesbasemult(x, y, z) == true
 | |
| 	}
 | |
| }
 | |
| 
 | |
| fn multiscalarmultmatchesbasemult(xx Scalar, yy Scalar, zz Scalar) bool {
 | |
| 	mut x := xx
 | |
| 	mut y := yy
 | |
| 	mut z := zz
 | |
| 
 | |
| 	mut p := Point{}
 | |
| 	mut q1 := Point{}
 | |
| 	mut q2 := Point{}
 | |
| 	mut q3 := Point{}
 | |
| 	mut check := Point{}
 | |
| 	mut b := new_generator_point()
 | |
| 
 | |
| 	p.multi_scalar_mult([x, y, z], [b, b, b])
 | |
| 
 | |
| 	q1.scalar_base_mult(mut x)
 | |
| 	q2.scalar_base_mult(mut y)
 | |
| 	q3.scalar_base_mult(mut z)
 | |
| 	check.add(q1, q2)
 | |
| 	check.add(check, q3)
 | |
| 
 | |
| 	check_on_curve(p, check, q1, q2, q3)
 | |
| 	return p.equal(check) == 1
 | |
| }
 | |
| 
 | |
| fn vartime_multiscala_rmultmatches_basemult(xx Scalar, yy Scalar, zz Scalar) bool {
 | |
| 	mut x := xx
 | |
| 	mut y := yy
 | |
| 	mut z := zz
 | |
| 	mut p := Point{}
 | |
| 	mut q1 := Point{}
 | |
| 	mut q2 := Point{}
 | |
| 	mut q3 := Point{}
 | |
| 	mut check := Point{}
 | |
| 	mut b := new_generator_point()
 | |
| 
 | |
| 	p.vartime_multiscalar_mult([x, y, z], [b, b, b])
 | |
| 
 | |
| 	q1.scalar_base_mult(mut x)
 | |
| 	q2.scalar_base_mult(mut y)
 | |
| 	q3.scalar_base_mult(mut z)
 | |
| 	check.add(q1, q2)
 | |
| 	check.add(check, q3)
 | |
| 
 | |
| 	check_on_curve(p, check, q1, q2, q3)
 | |
| 	return p.equal(check) == 1
 | |
| }
 | |
| 
 | |
| fn test_vartimemultiscalarmultmatchesbasemult() {
 | |
| 	for i in 0 .. 5 {
 | |
| 		x := generate_scalar(100) or { panic(err) }
 | |
| 		y := generate_scalar(5) or { panic(err) }
 | |
| 		z := generate_scalar(2) or { panic(err) }
 | |
| 		assert vartime_multiscala_rmultmatches_basemult(x, y, z) == true
 | |
| 	}
 | |
| }
 |