186 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			186 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			V
		
	
	
| module edwards25519
 | |
| 
 | |
| const (
 | |
| 	dalek_scalar  = Scalar{[byte(219), 106, 114, 9, 174, 249, 155, 89, 69, 203, 201, 93, 92, 116,
 | |
| 		234, 187, 78, 115, 103, 172, 182, 98, 62, 103, 187, 136, 13, 100, 248, 110, 12, 4]!}
 | |
| 	dsc_basepoint = [byte(0xf4), 0xef, 0x7c, 0xa, 0x34, 0x55, 0x7b, 0x9f, 0x72, 0x3b, 0xb6, 0x1e,
 | |
| 		0xf9, 0x46, 0x9, 0x91, 0x1c, 0xb9, 0xc0, 0x6c, 0x17, 0x28, 0x2d, 0x8b, 0x43, 0x2b, 0x5,
 | |
| 		0x18, 0x6a, 0x54, 0x3e, 0x48]
 | |
| )
 | |
| 
 | |
| fn dalek_scalar_basepoint() Point {
 | |
| 	mut p := Point{}
 | |
| 	p.set_bytes(edwards25519.dsc_basepoint) or { panic(err) }
 | |
| 	return p
 | |
| }
 | |
| 
 | |
| fn test_scalar_mult_small_scalars() {
 | |
| 	mut z := Scalar{}
 | |
| 	mut p := Point{}
 | |
| 	mut b := new_generator_point()
 | |
| 	mut i := new_identity_point()
 | |
| 	p.scalar_mult(mut z, b)
 | |
| 
 | |
| 	assert i.equal(p) == 1
 | |
| 	assert check_on_curve(p) == true
 | |
| 
 | |
| 	z = Scalar{[byte(1), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 		0, 0, 0, 0, 0, 0, 0]!}
 | |
| 	p.scalar_mult(mut z, b)
 | |
| 
 | |
| 	assert b.equal(p) == 1
 | |
| 	assert check_on_curve(p) == true
 | |
| }
 | |
| 
 | |
| fn test_scalar_mult_vs_dalek() {
 | |
| 	mut p := Point{}
 | |
| 	mut b := new_generator_point()
 | |
| 	mut dsc := edwards25519.dalek_scalar
 | |
| 	p.scalar_mult(mut dsc, b)
 | |
| 	mut ds := dalek_scalar_basepoint()
 | |
| 	assert ds.equal(p) == 1
 | |
| 
 | |
| 	assert check_on_curve(p) == true
 | |
| }
 | |
| 
 | |
| fn test_scalar_base_mult_vs_dalek() {
 | |
| 	mut p := Point{}
 | |
| 	mut dsc := edwards25519.dalek_scalar
 | |
| 	p.scalar_base_mult(mut dsc)
 | |
| 	mut ds := dalek_scalar_basepoint()
 | |
| 	assert ds.equal(p) == 1
 | |
| 
 | |
| 	assert check_on_curve(p)
 | |
| }
 | |
| 
 | |
| fn test_vartime_double_basemult_vs_dalek() {
 | |
| 	mut p := Point{}
 | |
| 	mut z := Scalar{}
 | |
| 	b := new_generator_point()
 | |
| 	p.vartime_double_scalar_base_mult(edwards25519.dalek_scalar, b, z)
 | |
| 
 | |
| 	mut ds := dalek_scalar_basepoint()
 | |
| 	assert ds.equal(p) == 1
 | |
| 	assert check_on_curve(p)
 | |
| 
 | |
| 	p.vartime_double_scalar_base_mult(z, b, edwards25519.dalek_scalar)
 | |
| 
 | |
| 	assert ds.equal(p) == 1
 | |
| 	assert check_on_curve(p)
 | |
| }
 | |
| 
 | |
| fn test_scalar_mult_distributes_over_add() {
 | |
| 	mut x := generate_scalar(100) or { panic(err) }
 | |
| 	mut y := generate_scalar(100) or { panic(err) }
 | |
| 	mut z := Scalar{}
 | |
| 
 | |
| 	z.add(x, y)
 | |
| 
 | |
| 	mut p := Point{}
 | |
| 	mut q := Point{}
 | |
| 	mut r := Point{}
 | |
| 	mut check := Point{}
 | |
| 	mut b := new_generator_point()
 | |
| 
 | |
| 	p.scalar_mult(mut x, b)
 | |
| 	q.scalar_mult(mut y, b)
 | |
| 	r.scalar_mult(mut z, b)
 | |
| 	check.add(p, q)
 | |
| 
 | |
| 	assert check_on_curve(p, q, r, check) == true
 | |
| 	assert check.equal(r) == 1
 | |
| }
 | |
| 
 | |
| fn test_scalarmult_non_identity_point() ? {
 | |
| 	// Check whether p.ScalarMult and q.ScalaBaseMult give the same,
 | |
| 	// when p and q are originally set to the base point.
 | |
| 
 | |
| 	mut x := generate_scalar(5000) ?
 | |
| 
 | |
| 	mut p := Point{}
 | |
| 	mut q := Point{}
 | |
| 	mut b := new_generator_point()
 | |
| 	p.set(b)
 | |
| 	q.set(b)
 | |
| 
 | |
| 	p.scalar_mult(mut x, b)
 | |
| 	q.scalar_base_mult(mut x)
 | |
| 
 | |
| 	assert check_on_curve(p, q) == true
 | |
| 
 | |
| 	assert p.equal(q) == 1
 | |
| }
 | |
| 
 | |
| fn test_basepoint_table_generation() {
 | |
| 	// The basepoint table is 32 affineLookupTables,
 | |
| 	// corresponding to (16^2i)*B for table i.
 | |
| 	bptable := basepoint_table()
 | |
| 	b := new_generator_point()
 | |
| 	mut tmp1 := ProjectiveP1{}
 | |
| 	mut tmp2 := ProjectiveP2{}
 | |
| 	mut tmp3 := Point{}
 | |
| 	tmp3.set(b)
 | |
| 	mut table := []AffineLookupTable{len: 32}
 | |
| 	for i := 0; i < 32; i++ {
 | |
| 		// Build the table
 | |
| 		table[i].from_p3(tmp3)
 | |
| 
 | |
| 		// Assert equality with the hardcoded one
 | |
| 		assert table[i] == bptable[i]
 | |
| 
 | |
| 		// Set p = (16^2)*p = 256*p = 2^8*p
 | |
| 		tmp2.from_p3(tmp3)
 | |
| 		for j := 0; j < 7; j++ {
 | |
| 			tmp1.double(tmp2)
 | |
| 			tmp2.from_p1(tmp1)
 | |
| 		}
 | |
| 		tmp1.double(tmp2)
 | |
| 		tmp3.from_p1(tmp1)
 | |
| 
 | |
| 		assert check_on_curve(tmp3) == true
 | |
| 	}
 | |
| }
 | |
| 
 | |
| fn test_scalar_mult_matches_base_mult() {
 | |
| 	mut x := generate_scalar(100) or { panic(err) }
 | |
| 	b := new_generator_point()
 | |
| 	mut p := Point{}
 | |
| 	mut q := Point{}
 | |
| 
 | |
| 	p.scalar_mult(mut x, b)
 | |
| 	q.scalar_base_mult(mut x)
 | |
| 
 | |
| 	assert check_on_curve(p, q) == true
 | |
| 	assert p.equal(q) == 1
 | |
| }
 | |
| 
 | |
| fn test_basepoint_naf_table_generation() {
 | |
| 	mut table := NafLookupTable8{}
 | |
| 	b := new_generator_point()
 | |
| 
 | |
| 	table.from_p3(b)
 | |
| 
 | |
| 	bnt := basepoint_naf_table()
 | |
| 	assert table == bnt
 | |
| }
 | |
| 
 | |
| fn test_vartime_double_scalar_base_mult() {
 | |
| 	mut x := generate_scalar(100) or { panic(err) }
 | |
| 	mut y := generate_scalar(100) or { panic(err) }
 | |
| 	b := new_generator_point()
 | |
| 
 | |
| 	mut p := Point{}
 | |
| 	mut q1 := Point{}
 | |
| 	mut q2 := Point{}
 | |
| 	mut check := Point{}
 | |
| 
 | |
| 	p.vartime_double_scalar_base_mult(x, b, y)
 | |
| 
 | |
| 	q1.scalar_base_mult(mut x)
 | |
| 	q2.scalar_base_mult(mut y)
 | |
| 	check.add(q1, q2)
 | |
| 
 | |
| 	assert check_on_curve(p, check, q1, q2) == true
 | |
| 	assert p.equal(check) == 1
 | |
| }
 |