340 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			340 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			V
		
	
	
module strconv
 | 
						|
 | 
						|
import math
 | 
						|
 | 
						|
fn (d Dec64) get_string_64(neg bool, i_n_digit int, i_pad_digit int) string {
 | 
						|
	mut n_digit := i_n_digit + 1
 | 
						|
	pad_digit := i_pad_digit + 1
 | 
						|
	mut out := d.m
 | 
						|
	mut d_exp := d.e
 | 
						|
	// mut out_len      := decimal_len_64(out)
 | 
						|
	mut out_len := dec_digits(out)
 | 
						|
	out_len_original := out_len
 | 
						|
 | 
						|
	mut fw_zeros := 0
 | 
						|
	if pad_digit > out_len {
 | 
						|
		fw_zeros = pad_digit - out_len
 | 
						|
	}
 | 
						|
 | 
						|
	mut buf := []u8{len: (out_len + 6 + 1 + 1 + fw_zeros)} // sign + mant_len + . +  e + e_sign + exp_len(2) + \0}
 | 
						|
	mut i := 0
 | 
						|
 | 
						|
	if neg {
 | 
						|
		#buf.arr.arr[i.val] = '-'.charCodeAt()
 | 
						|
		i++
 | 
						|
	}
 | 
						|
 | 
						|
	mut disp := 0
 | 
						|
	if out_len <= 1 {
 | 
						|
		disp = 1
 | 
						|
	}
 | 
						|
 | 
						|
	// rounding last used digit
 | 
						|
	if n_digit < out_len {
 | 
						|
		// println("out:[$out]")
 | 
						|
		out += ten_pow_table_64[out_len - n_digit - 1] * 5 // round to up
 | 
						|
		out /= ten_pow_table_64[out_len - n_digit]
 | 
						|
		// println("out1:[$out] ${d.m / ten_pow_table_64[out_len - n_digit ]}")
 | 
						|
		if d.m / ten_pow_table_64[out_len - n_digit] < out {
 | 
						|
			d_exp++
 | 
						|
			n_digit++
 | 
						|
		}
 | 
						|
 | 
						|
		// println("cmp: ${d.m/ten_pow_table_64[out_len - n_digit ]} ${out/ten_pow_table_64[out_len - n_digit ]}")
 | 
						|
 | 
						|
		out_len = n_digit
 | 
						|
		// println("orig: ${out_len_original} new len: ${out_len} out:[$out]")
 | 
						|
	}
 | 
						|
 | 
						|
	y := i + out_len
 | 
						|
	mut x := 0
 | 
						|
	for x < (out_len - disp - 1) {
 | 
						|
		#buf.arr.arr[y.val - x.val].val = '0'.charCodeAt() + Number(out.valueOf() % 10n)
 | 
						|
 | 
						|
		out /= 10
 | 
						|
		i++
 | 
						|
		x++
 | 
						|
	}
 | 
						|
 | 
						|
	// no decimal digits needed, end here
 | 
						|
	if i_n_digit == 0 {
 | 
						|
		res := ''
 | 
						|
		#buf.arr.arr.forEach((it) => it.val == 0 ? res.str : res.str += String.fromCharCode(it.val))
 | 
						|
 | 
						|
		return res
 | 
						|
	}
 | 
						|
 | 
						|
	if out_len >= 1 {
 | 
						|
		buf[y - x] = `.`
 | 
						|
		x++
 | 
						|
		i++
 | 
						|
	}
 | 
						|
 | 
						|
	if y - x >= 0 {
 | 
						|
		#buf.arr.arr[y.val - x.val].val = '0'.charCodeAt() + Number(out.valueOf() % 10n)
 | 
						|
		i++
 | 
						|
	}
 | 
						|
 | 
						|
	for fw_zeros > 0 {
 | 
						|
		#buf.arr.arr[i.val].val = '0'.charCodeAt()
 | 
						|
		i++
 | 
						|
		fw_zeros--
 | 
						|
	}
 | 
						|
 | 
						|
	#buf.arr.arr[i.val].val = 'e'.charCodeAt()
 | 
						|
	i++
 | 
						|
 | 
						|
	mut exp := d_exp + out_len_original - 1
 | 
						|
	if exp < 0 {
 | 
						|
		#buf.arr.arr[i.val].val = '-'.charCodeAt()
 | 
						|
		i++
 | 
						|
		exp = -exp
 | 
						|
	} else {
 | 
						|
		#buf.arr.arr[i.val].val = '+'.charCodeAt()
 | 
						|
		i++
 | 
						|
	}
 | 
						|
 | 
						|
	// Always print at least two digits to match strconv's formatting.
 | 
						|
	d2 := exp % 10
 | 
						|
	exp /= 10
 | 
						|
	d1 := exp % 10
 | 
						|
	_ := d1
 | 
						|
	_ := d2
 | 
						|
	d0 := exp / 10
 | 
						|
	if d0 > 0 {
 | 
						|
		#buf.arr.arr[i].val = '0'.charCodeAt() + d0.val
 | 
						|
		i++
 | 
						|
	}
 | 
						|
	#buf.arr.arr[i].val = '0'.charCodeAt() + d1.val
 | 
						|
	i++
 | 
						|
	#buf.arr.arr[i].val = '0' + d2.val
 | 
						|
	i++
 | 
						|
	#buf.arr.arr[i].val = 0
 | 
						|
 | 
						|
	res := ''
 | 
						|
	#buf.arr.arr.forEach((it) => it.val == 0 ? res.str : res.str += String.fromCharCode(it.val))
 | 
						|
 | 
						|
	return res
 | 
						|
}
 | 
						|
 | 
						|
fn f64_to_decimal_exact_int(i_mant u64, exp u64) (Dec64, bool) {
 | 
						|
	mut d := Dec64{}
 | 
						|
	e := exp - bias64
 | 
						|
	if e > mantbits64 {
 | 
						|
		return d, false
 | 
						|
	}
 | 
						|
	shift := mantbits64 - e
 | 
						|
	mant := i_mant | u64(0x0010_0000_0000_0000) // implicit 1
 | 
						|
	// mant  := i_mant | (1 << mantbits64) // implicit 1
 | 
						|
	d.m = mant >> shift
 | 
						|
	if (d.m << shift) != mant {
 | 
						|
		return d, false
 | 
						|
	}
 | 
						|
 | 
						|
	for (d.m % 10) == 0 {
 | 
						|
		d.m /= 10
 | 
						|
		d.e++
 | 
						|
	}
 | 
						|
	return d, true
 | 
						|
}
 | 
						|
 | 
						|
fn f64_to_decimal(mant u64, exp u64) Dec64 {
 | 
						|
	mut e2 := 0
 | 
						|
	mut m2 := u64(0)
 | 
						|
	if exp == 0 {
 | 
						|
		// We subtract 2 so that the bounds computation has
 | 
						|
		// 2 additional bits.
 | 
						|
		e2 = 1 - bias64 - int(mantbits64) - 2
 | 
						|
		m2 = mant
 | 
						|
	} else {
 | 
						|
		e2 = int(exp) - bias64 - int(mantbits64) - 2
 | 
						|
		m2 = (u64(1) << mantbits64) | mant
 | 
						|
	}
 | 
						|
	even := (m2 & 1) == 0
 | 
						|
	accept_bounds := even
 | 
						|
 | 
						|
	// Step 2: Determine the interval of valid decimal representations.
 | 
						|
	mv := u64(4 * m2)
 | 
						|
	mm_shift := bool_to_u64(mant != 0 || exp <= 1)
 | 
						|
 | 
						|
	// Step 3: Convert to a decimal power base uing 128-bit arithmetic.
 | 
						|
	mut vr := u64(0)
 | 
						|
	mut vp := u64(0)
 | 
						|
	mut vm := u64(0)
 | 
						|
	mut e10 := 0
 | 
						|
	mut vm_is_trailing_zeros := false
 | 
						|
	mut vr_is_trailing_zeros := false
 | 
						|
 | 
						|
	if e2 >= 0 {
 | 
						|
		// This expression is slightly faster than max(0, log10Pow2(e2) - 1).
 | 
						|
		q := log10_pow2(e2) - bool_to_u32(e2 > 3)
 | 
						|
		e10 = int(q)
 | 
						|
		k := pow5_inv_num_bits_64 + pow5_bits(int(q)) - 1
 | 
						|
		i := -e2 + int(q) + k
 | 
						|
 | 
						|
		mul := pow5_inv_split_64[q]
 | 
						|
		vr = mul_shift_64(u64(4) * m2, mul, i)
 | 
						|
		vp = mul_shift_64(u64(4) * m2 + u64(2), mul, i)
 | 
						|
		vm = mul_shift_64(u64(4) * m2 - u64(1) - mm_shift, mul, i)
 | 
						|
		if q <= 21 {
 | 
						|
			// This should use q <= 22, but I think 21 is also safe.
 | 
						|
			// Smaller values may still be safe, but it's more
 | 
						|
			// difficult to reason about them. Only one of mp, mv,
 | 
						|
			// and mm can be a multiple of 5, if any.
 | 
						|
			if mv % 5 == 0 {
 | 
						|
				vr_is_trailing_zeros = multiple_of_power_of_five_64(mv, q)
 | 
						|
			} else if accept_bounds {
 | 
						|
				// Same as min(e2 + (^mm & 1), pow5Factor64(mm)) >= q
 | 
						|
				// <=> e2 + (^mm & 1) >= q && pow5Factor64(mm) >= q
 | 
						|
				// <=> true && pow5Factor64(mm) >= q, since e2 >= q.
 | 
						|
				vm_is_trailing_zeros = multiple_of_power_of_five_64(mv - 1 - mm_shift,
 | 
						|
					q)
 | 
						|
			} else if multiple_of_power_of_five_64(mv + 2, q) {
 | 
						|
				vp--
 | 
						|
			}
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		// This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
 | 
						|
		q := log10_pow5(-e2) - bool_to_u32(-e2 > 1)
 | 
						|
		e10 = int(q) + e2
 | 
						|
		i := -e2 - int(q)
 | 
						|
		k := pow5_bits(i) - pow5_num_bits_64
 | 
						|
		j := int(q) - k
 | 
						|
		mul := pow5_split_64[i]
 | 
						|
		vr = mul_shift_64(u64(4) * m2, mul, j)
 | 
						|
		vp = mul_shift_64(u64(4) * m2 + u64(2), mul, j)
 | 
						|
		vm = mul_shift_64(u64(4) * m2 - u64(1) - mm_shift, mul, j)
 | 
						|
		if q <= 1 {
 | 
						|
			// {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
 | 
						|
			// mv = 4 * m2, so it always has at least two trailing 0 bits.
 | 
						|
			vr_is_trailing_zeros = true
 | 
						|
			if accept_bounds {
 | 
						|
				// mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
 | 
						|
				vm_is_trailing_zeros = (mm_shift == 1)
 | 
						|
			} else {
 | 
						|
				// mp = mv + 2, so it always has at least one trailing 0 bit.
 | 
						|
				vp--
 | 
						|
			}
 | 
						|
		} else if q < 63 { // TODO(ulfjack/cespare): Use a tighter bound here.
 | 
						|
			// We need to compute min(ntz(mv), pow5Factor64(mv) - e2) >= q - 1
 | 
						|
			// <=> ntz(mv) >= q - 1 && pow5Factor64(mv) - e2 >= q - 1
 | 
						|
			// <=> ntz(mv) >= q - 1 (e2 is negative and -e2 >= q)
 | 
						|
			// <=> (mv & ((1 << (q - 1)) - 1)) == 0
 | 
						|
			// We also need to make sure that the left shift does not overflow.
 | 
						|
			vr_is_trailing_zeros = multiple_of_power_of_two_64(mv, q - 1)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Step 4: Find the shortest decimal representation
 | 
						|
	// in the interval of valid representations.
 | 
						|
	mut removed := 0
 | 
						|
	mut last_removed_digit := u8(0)
 | 
						|
	mut out := u64(0)
 | 
						|
	// On average, we remove ~2 digits.
 | 
						|
	if vm_is_trailing_zeros || vr_is_trailing_zeros {
 | 
						|
		// General case, which happens rarely (~0.7%).
 | 
						|
		for {
 | 
						|
			vp_div_10 := vp / 10
 | 
						|
			vm_div_10 := vm / 10
 | 
						|
			if vp_div_10 <= vm_div_10 {
 | 
						|
				break
 | 
						|
			}
 | 
						|
			vm_mod_10 := vm % 10
 | 
						|
			vr_div_10 := vr / 10
 | 
						|
			vr_mod_10 := vr % 10
 | 
						|
			vm_is_trailing_zeros = vm_is_trailing_zeros && vm_mod_10 == 0
 | 
						|
			vr_is_trailing_zeros = vr_is_trailing_zeros && (last_removed_digit == 0)
 | 
						|
			last_removed_digit = u8(vr_mod_10)
 | 
						|
			vr = vr_div_10
 | 
						|
			vp = vp_div_10
 | 
						|
			vm = vm_div_10
 | 
						|
			removed++
 | 
						|
		}
 | 
						|
		if vm_is_trailing_zeros {
 | 
						|
			for {
 | 
						|
				vm_div_10 := vm / 10
 | 
						|
				vm_mod_10 := vm % 10
 | 
						|
				if vm_mod_10 != 0 {
 | 
						|
					break
 | 
						|
				}
 | 
						|
				vp_div_10 := vp / 10
 | 
						|
				vr_div_10 := vr / 10
 | 
						|
				vr_mod_10 := vr % 10
 | 
						|
				vr_is_trailing_zeros = vr_is_trailing_zeros && (last_removed_digit == 0)
 | 
						|
				last_removed_digit = u8(vr_mod_10)
 | 
						|
				vr = vr_div_10
 | 
						|
				vp = vp_div_10
 | 
						|
				vm = vm_div_10
 | 
						|
				removed++
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if vr_is_trailing_zeros && (last_removed_digit == 5) && (vr % 2) == 0 {
 | 
						|
			// Round even if the exact number is .....50..0.
 | 
						|
			last_removed_digit = 4
 | 
						|
		}
 | 
						|
		out = vr
 | 
						|
		// We need to take vr + 1 if vr is outside bounds
 | 
						|
		// or we need to round up.
 | 
						|
		if (vr == vm && (!accept_bounds || !vm_is_trailing_zeros)) || last_removed_digit >= 5 {
 | 
						|
			out++
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		// Specialized for the common case (~99.3%).
 | 
						|
		// Percentages below are relative to this.
 | 
						|
		mut round_up := false
 | 
						|
		for vp / 100 > vm / 100 {
 | 
						|
			// Optimization: remove two digits at a time (~86.2%).
 | 
						|
			round_up = (vr % 100) >= 50
 | 
						|
			vr /= 100
 | 
						|
			vp /= 100
 | 
						|
			vm /= 100
 | 
						|
			removed += 2
 | 
						|
		}
 | 
						|
		// Loop iterations below (approximately), without optimization above:
 | 
						|
		// 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
 | 
						|
		// Loop iterations below (approximately), with optimization above:
 | 
						|
		// 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
 | 
						|
		for vp / 10 > vm / 10 {
 | 
						|
			round_up = (vr % 10) >= 5
 | 
						|
			vr /= 10
 | 
						|
			vp /= 10
 | 
						|
			vm /= 10
 | 
						|
			removed++
 | 
						|
		}
 | 
						|
		// We need to take vr + 1 if vr is outside bounds
 | 
						|
		// or we need to round up.
 | 
						|
		out = vr + bool_to_u64(vr == vm || round_up)
 | 
						|
	}
 | 
						|
 | 
						|
	return Dec64{
 | 
						|
		m: out
 | 
						|
		e: e10 + removed
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
//=============================================================================
 | 
						|
// String Functions
 | 
						|
//=============================================================================
 | 
						|
 | 
						|
// f64_to_str return a string in scientific notation with max n_digit after the dot
 | 
						|
pub fn f64_to_str(f f64, n_digit int) string {
 | 
						|
	u := math.f64_bits(f)
 | 
						|
	neg := (u >> (mantbits64 + expbits64)) != 0
 | 
						|
	mant := u & ((u64(1) << mantbits64) - u64(1))
 | 
						|
	exp := (u >> mantbits64) & ((u64(1) << expbits64) - u64(1))
 | 
						|
	// println("s:${neg} mant:${mant} exp:${exp} float:${f} byte:${u1.u:016lx}")
 | 
						|
 | 
						|
	// Exit early for easy cases.
 | 
						|
	if (exp == maxexp64) || (exp == 0 && mant == 0) {
 | 
						|
		return get_string_special(neg, exp == 0, mant == 0)
 | 
						|
	}
 | 
						|
 | 
						|
	mut d, ok := f64_to_decimal_exact_int(mant, exp)
 | 
						|
	if !ok {
 | 
						|
		// println("to_decimal")
 | 
						|
		d = f64_to_decimal(mant, exp)
 | 
						|
	}
 | 
						|
	// println("${d.m} ${d.e}")
 | 
						|
	return d.get_string_64(neg, n_digit, 0)
 | 
						|
}
 |