182 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			182 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			V
		
	
	
| // Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
 | |
| // Use of this source code is governed by an MIT license
 | |
| // that can be found in the LICENSE file.
 | |
| module math
 | |
| 
 | |
| // aprox_sin returns an approximation of sin(a) made using lolremez
 | |
| pub fn aprox_sin(a f64) f64 {
 | |
| 	a0 := 1.91059300966915117e-31
 | |
| 	a1 := 1.00086760103908896
 | |
| 	a2 := -1.21276126894734565e-2
 | |
| 	a3 := -1.38078780785773762e-1
 | |
| 	a4 := -2.67353392911981221e-2
 | |
| 	a5 := 2.08026600266304389e-2
 | |
| 	a6 := -3.03996055049204407e-3
 | |
| 	a7 := 1.38235642404333740e-4
 | |
| 	return a0 + a * (a1 + a * (a2 + a * (a3 + a * (a4 + a * (a5 + a * (a6 + a * a7))))))
 | |
| }
 | |
| 
 | |
| // aprox_cos returns an approximation of sin(a) made using lolremez
 | |
| pub fn aprox_cos(a f64) f64 {
 | |
| 	a0 := 9.9995999154986614e-1
 | |
| 	a1 := 1.2548995793001028e-3
 | |
| 	a2 := -5.0648546280678015e-1
 | |
| 	a3 := 1.2942246466519995e-2
 | |
| 	a4 := 2.8668384702547972e-2
 | |
| 	a5 := 7.3726485210586547e-3
 | |
| 	a6 := -3.8510875386947414e-3
 | |
| 	a7 := 4.7196604604366623e-4
 | |
| 	a8 := -1.8776444013090451e-5
 | |
| 	return a0 + a * (a1 + a * (a2 + a * (a3 + a * (a4 + a * (a5 + a * (a6 + a * (a7 + a * a8)))))))
 | |
| }
 | |
| 
 | |
| // copysign returns a value with the magnitude of x and the sign of y
 | |
| [inline]
 | |
| pub fn copysign(x f64, y f64) f64 {
 | |
| 	return f64_from_bits((f64_bits(x) & ~sign_mask) | (f64_bits(y) & sign_mask))
 | |
| }
 | |
| 
 | |
| // degrees converts from radians to degrees.
 | |
| [inline]
 | |
| pub fn degrees(radians f64) f64 {
 | |
| 	return radians * (180.0 / pi)
 | |
| }
 | |
| 
 | |
| // digits returns an array of the digits of n in the given base.
 | |
| pub fn digits(_n int, base int) []int {
 | |
| 	if base < 2 {
 | |
| 		panic('digits: Cannot find digits of n with base $base')
 | |
| 	}
 | |
| 	mut n := _n
 | |
| 	mut sign := 1
 | |
| 	if n < 0 {
 | |
| 		sign = -1
 | |
| 		n = -n
 | |
| 	}
 | |
| 	mut res := []int{}
 | |
| 	for n != 0 {
 | |
| 		res << (n % base) * sign
 | |
| 		n /= base
 | |
| 	}
 | |
| 	return res
 | |
| }
 | |
| 
 | |
| // max returns the maximum value of the two provided.
 | |
| [inline]
 | |
| pub fn max(a f64, b f64) f64 {
 | |
| 	if a > b {
 | |
| 		return a
 | |
| 	}
 | |
| 	return b
 | |
| }
 | |
| 
 | |
| // min returns the minimum value of the two provided.
 | |
| [inline]
 | |
| pub fn min(a f64, b f64) f64 {
 | |
| 	if a < b {
 | |
| 		return a
 | |
| 	}
 | |
| 	return b
 | |
| }
 | |
| 
 | |
| // minmax returns the minimum and maximum value of the two provided.
 | |
| pub fn minmax(a f64, b f64) (f64, f64) {
 | |
| 	if a < b {
 | |
| 		return a, b
 | |
| 	}
 | |
| 	return b, a
 | |
| }
 | |
| 
 | |
| // clamp returns x constrained between a and b
 | |
| [inline]
 | |
| pub fn clamp(x f64, a f64, b f64) f64 {
 | |
| 	if x < a {
 | |
| 		return a
 | |
| 	}
 | |
| 	if x > b {
 | |
| 		return b
 | |
| 	}
 | |
| 	return x
 | |
| }
 | |
| 
 | |
| // sign returns the corresponding sign -1.0, 1.0 of the provided number.
 | |
| // if n is not a number, its sign is nan too.
 | |
| [inline]
 | |
| pub fn sign(n f64) f64 {
 | |
| 	if is_nan(n) {
 | |
| 		return nan()
 | |
| 	}
 | |
| 	return copysign(1.0, n)
 | |
| }
 | |
| 
 | |
| // signi returns the corresponding sign -1.0, 1.0 of the provided number.
 | |
| [inline]
 | |
| pub fn signi(n f64) int {
 | |
| 	return int(copysign(1.0, n))
 | |
| }
 | |
| 
 | |
| // radians converts from degrees to radians.
 | |
| [inline]
 | |
| pub fn radians(degrees f64) f64 {
 | |
| 	return degrees * (pi / 180.0)
 | |
| }
 | |
| 
 | |
| // signbit returns a value with the boolean representation of the sign for x
 | |
| [inline]
 | |
| pub fn signbit(x f64) bool {
 | |
| 	return f64_bits(x) & sign_mask != 0
 | |
| }
 | |
| 
 | |
| pub fn tolerance(a f64, b f64, tol f64) bool {
 | |
| 	mut ee := tol
 | |
| 	// Multiplying by ee here can underflow denormal values to zero.
 | |
| 	// Check a==b so that at least if a and b are small and identical
 | |
| 	// we say they match.
 | |
| 	if a == b {
 | |
| 		return true
 | |
| 	}
 | |
| 	mut d := a - b
 | |
| 	if d < 0 {
 | |
| 		d = -d
 | |
| 	}
 | |
| 	// note: b is correct (expected) value, a is actual value.
 | |
| 	// make error tolerance a fraction of b, not a.
 | |
| 	if b != 0 {
 | |
| 		ee = ee * b
 | |
| 		if ee < 0 {
 | |
| 			ee = -ee
 | |
| 		}
 | |
| 	}
 | |
| 	return d < ee
 | |
| }
 | |
| 
 | |
| pub fn close(a f64, b f64) bool {
 | |
| 	return tolerance(a, b, 1e-14)
 | |
| }
 | |
| 
 | |
| pub fn veryclose(a f64, b f64) bool {
 | |
| 	return tolerance(a, b, 4e-16)
 | |
| }
 | |
| 
 | |
| pub fn alike(a f64, b f64) bool {
 | |
| 	if is_nan(a) && is_nan(b) {
 | |
| 		return true
 | |
| 	} else if a == b {
 | |
| 		return signbit(a) == signbit(b)
 | |
| 	}
 | |
| 	return false
 | |
| }
 | |
| 
 | |
| fn is_odd_int(x f64) bool {
 | |
| 	xi, xf := modf(x)
 | |
| 	return xf == 0 && (i64(xi) & 1) == 1
 | |
| }
 | |
| 
 | |
| fn is_neg_int(x f64) bool {
 | |
| 	if x < 0 {
 | |
| 		_, xf := modf(x)
 | |
| 		return xf == 0
 | |
| 	}
 | |
| 	return false
 | |
| }
 |