177 lines
3.5 KiB
V
177 lines
3.5 KiB
V
module strconv
|
|
|
|
import math.bits
|
|
|
|
// general utilities
|
|
|
|
// General Utilities
|
|
[if debug_strconv ?]
|
|
fn assert1(t bool, msg string) {
|
|
if !t {
|
|
panic(msg)
|
|
}
|
|
}
|
|
|
|
[inline]
|
|
fn bool_to_int(b bool) int {
|
|
if b {
|
|
return 1
|
|
}
|
|
return 0
|
|
}
|
|
|
|
[inline]
|
|
fn bool_to_u32(b bool) u32 {
|
|
if b {
|
|
return u32(1)
|
|
}
|
|
return u32(0)
|
|
}
|
|
|
|
[inline]
|
|
fn bool_to_u64(b bool) u64 {
|
|
if b {
|
|
return u64(1)
|
|
}
|
|
return u64(0)
|
|
}
|
|
|
|
fn get_string_special(neg bool, expZero bool, mantZero bool) string {
|
|
if !mantZero {
|
|
return 'nan'
|
|
}
|
|
if !expZero {
|
|
if neg {
|
|
return '-inf'
|
|
} else {
|
|
return '+inf'
|
|
}
|
|
}
|
|
if neg {
|
|
return '-0e+00'
|
|
}
|
|
return '0e+00'
|
|
}
|
|
|
|
/*
|
|
32 bit functions
|
|
*/
|
|
|
|
fn mul_shift_32(m u32, mul u64, ishift int) u32 {
|
|
// QTODO
|
|
// assert ishift > 32
|
|
|
|
hi, lo := bits.mul_64(u64(m), mul)
|
|
shifted_sum := (lo >> u64(ishift)) + (hi << u64(64 - ishift))
|
|
assert1(shifted_sum <= 2147483647, 'shiftedSum <= math.max_u32')
|
|
return u32(shifted_sum)
|
|
}
|
|
|
|
fn mul_pow5_invdiv_pow2(m u32, q u32, j int) u32 {
|
|
return mul_shift_32(m, pow5_inv_split_32[q], j)
|
|
}
|
|
|
|
fn mul_pow5_div_pow2(m u32, i u32, j int) u32 {
|
|
return mul_shift_32(m, pow5_split_32[i], j)
|
|
}
|
|
|
|
fn pow5_factor_32(i_v u32) u32 {
|
|
mut v := i_v
|
|
for n := u32(0); true; n++ {
|
|
q := v / 5
|
|
r := v % 5
|
|
if r != 0 {
|
|
return n
|
|
}
|
|
v = q
|
|
}
|
|
return v
|
|
}
|
|
|
|
// multiple_of_power_of_five_32 reports whether v is divisible by 5^p.
|
|
fn multiple_of_power_of_five_32(v u32, p u32) bool {
|
|
return pow5_factor_32(v) >= p
|
|
}
|
|
|
|
// multiple_of_power_of_two_32 reports whether v is divisible by 2^p.
|
|
fn multiple_of_power_of_two_32(v u32, p u32) bool {
|
|
return u32(bits.trailing_zeros_32(v)) >= p
|
|
}
|
|
|
|
// log10_pow2 returns floor(log_10(2^e)).
|
|
fn log10_pow2(e int) u32 {
|
|
// The first value this approximation fails for is 2^1651
|
|
// which is just greater than 10^297.
|
|
assert1(e >= 0, 'e >= 0')
|
|
assert1(e <= 1650, 'e <= 1650')
|
|
return (u32(e) * 78913) >> 18
|
|
}
|
|
|
|
// log10_pow5 returns floor(log_10(5^e)).
|
|
fn log10_pow5(e int) u32 {
|
|
// The first value this approximation fails for is 5^2621
|
|
// which is just greater than 10^1832.
|
|
assert1(e >= 0, 'e >= 0')
|
|
assert1(e <= 2620, 'e <= 2620')
|
|
return (u32(e) * 732923) >> 20
|
|
}
|
|
|
|
// pow5_bits returns ceil(log_2(5^e)), or else 1 if e==0.
|
|
fn pow5_bits(e int) int {
|
|
// This approximation works up to the point that the multiplication
|
|
// overflows at e = 3529. If the multiplication were done in 64 bits,
|
|
// it would fail at 5^4004 which is just greater than 2^9297.
|
|
assert1(e >= 0, 'e >= 0')
|
|
assert1(e <= 3528, 'e <= 3528')
|
|
return int(((u32(e) * 1217359) >> 19) + 1)
|
|
}
|
|
|
|
/*
|
|
64 bit functions
|
|
*/
|
|
|
|
fn shift_right_128(v Uint128, shift int) u64 {
|
|
// The shift value is always modulo 64.
|
|
// In the current implementation of the 64-bit version
|
|
// of Ryu, the shift value is always < 64.
|
|
// (It is in the range [2, 59].)
|
|
// Check this here in case a future change requires larger shift
|
|
// values. In this case this function needs to be adjusted.
|
|
assert1(shift < 64, 'shift < 64')
|
|
return (v.hi << u64(64 - shift)) | (v.lo >> u32(shift))
|
|
}
|
|
|
|
fn mul_shift_64(m u64, mul Uint128, shift int) u64 {
|
|
hihi, hilo := bits.mul_64(m, mul.hi)
|
|
lohi, _ := bits.mul_64(m, mul.lo)
|
|
mut sum := Uint128{
|
|
lo: lohi + hilo
|
|
hi: hihi
|
|
}
|
|
if sum.lo < lohi {
|
|
sum.hi++ // overflow
|
|
}
|
|
return shift_right_128(sum, shift - 64)
|
|
}
|
|
|
|
fn pow5_factor_64(v_i u64) u32 {
|
|
mut v := v_i
|
|
for n := u32(0); true; n++ {
|
|
q := v / 5
|
|
r := v % 5
|
|
if r != 0 {
|
|
return n
|
|
}
|
|
v = q
|
|
}
|
|
return u32(0)
|
|
}
|
|
|
|
fn multiple_of_power_of_five_64(v u64, p u32) bool {
|
|
return pow5_factor_64(v) >= p
|
|
}
|
|
|
|
fn multiple_of_power_of_two_64(v u64, p u32) bool {
|
|
return u32(bits.trailing_zeros_64(v)) >= p
|
|
}
|