v/vlib/v/checker/checker.v

2904 lines
88 KiB
V

// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module checker
import v.ast
import v.table
import v.token
import v.pref
import v.util
import v.errors
const (
max_nr_errors = 300
)
pub struct Checker {
pub mut:
table &table.Table
file ast.File
nr_errors int
nr_warnings int
errors []errors.Error
warnings []errors.Warning
error_lines []int // to avoid printing multiple errors for the same line
expected_type table.Type
cur_fn &ast.FnDecl // current function
const_decl string
const_deps []string
const_names []string
pref &pref.Preferences // Preferences shared from V struct
in_for_count int // if checker is currently in an for loop
// checked_ident string // to avoid infinit checker loops
returns bool
scope_returns bool
mod string // current module name
is_builtin_mod bool // are we in `builtin`?
inside_unsafe bool
cur_generic_type table.Type
mut:
expr_level int // to avoid infinit recursion segfaults due to compiler bugs
inside_sql bool // to handle sql table fields pseudo variables
cur_orm_ts table.TypeSymbol
}
pub fn new_checker(table &table.Table, pref &pref.Preferences) Checker {
return Checker{
table: table
pref: pref
cur_fn: 0
}
}
pub fn (mut c Checker) check(ast_file ast.File) {
c.file = ast_file
for i, ast_import in ast_file.imports {
for j in 0 .. i {
if ast_import.mod == ast_file.imports[j].mod {
c.error('module name `$ast_import.mod` duplicate', ast_import.pos)
}
}
}
for stmt in ast_file.stmts {
c.expr_level = 0
c.stmt(stmt)
}
c.check_scope_vars(c.file.scope)
}
pub fn (mut c Checker) check_scope_vars(sc &ast.Scope) {
for _, obj in sc.objects {
match obj {
ast.Var {
if !c.pref.is_repl {
if !obj.is_used && obj.name[0] != `_` {
if c.pref.is_prod {
c.error('unused variable: `$obj.name`', obj.pos)
} else {
c.warn('unused variable: `$obj.name`', obj.pos)
}
}
}
// TODO: fix all of these warnings
// if obj.is_mut && !obj.is_changed {
// c.warn('`$obj.name` is declared as mutable, but it was never changed', obj.pos)
// }
}
else {}
}
}
for _, child in sc.children {
c.check_scope_vars(child)
}
}
// not used right now
pub fn (mut c Checker) check2(ast_file ast.File) []errors.Error {
c.file = ast_file
for stmt in ast_file.stmts {
c.stmt(stmt)
}
return c.errors
}
pub fn (mut c Checker) check_files(ast_files []ast.File) {
mut has_main_mod_file := false
mut has_main_fn := false
mut files_from_main_module := []&ast.File{}
for i in 0..ast_files.len {
file := &ast_files[i]
c.check(file)
if file.mod.name == 'main' {
files_from_main_module << file
has_main_mod_file = true
if c.check_file_in_main(file) {
has_main_fn = true
}
}
}
if has_main_mod_file && !has_main_fn && files_from_main_module.len > 0 {
if c.pref.is_script && !c.pref.is_test {
first_main_file := files_from_main_module[0]
first_main_file.stmts << ast.FnDecl{
name: 'main.main'
mod: 'main'
file: first_main_file.path
return_type: table.void_type
}
has_main_fn = true
}
}
// Make sure fn main is defined in non lib builds
if c.pref.build_mode == .build_module || c.pref.is_test {
return
}
if c.pref.is_shared {
// shared libs do not need to have a main
return
}
if !has_main_mod_file {
c.error('project must include a `main` module or be a shared library (compile with `v -shared`)',
token.Position{})
} else if !has_main_fn {
c.error('function `main` must be declared in the main module', token.Position{})
}
}
const (
no_pub_in_main_warning = 'in module main cannot be declared public'
)
// do checks specific to files in main module
// returns `true` if a main function is in the file
fn (mut c Checker) check_file_in_main(file ast.File) bool {
mut has_main_fn := false
for stmt in file.stmts {
match stmt {
ast.ConstDecl {
if stmt.is_pub {
c.warn('const $no_pub_in_main_warning', stmt.pos)
}
}
/*
// TODO not a Stmt
ast.ConstField {
if stmt.is_pub {
c.warn('const field `$stmt.name` $no_pub_in_main_warning', stmt.pos)
}
}
*/
ast.EnumDecl {
if stmt.is_pub {
c.warn('enum `$stmt.name` $no_pub_in_main_warning', stmt.pos)
}
}
ast.FnDecl {
if stmt.name == 'main.main' {
has_main_fn = true
if stmt.is_pub {
c.error('function `main` cannot be declared public', stmt.pos)
}
if stmt.args.len > 0 {
c.error('function `main` cannot have arguments', stmt.pos)
}
if stmt.return_type != table.void_type {
c.error('function `main` cannot return values', stmt.pos)
}
} else {
if stmt.is_pub && !stmt.is_method {
c.warn('function `$stmt.name` $no_pub_in_main_warning', stmt.pos)
}
}
if stmt.ctdefine.len > 0 {
if stmt.return_type != table.void_type {
c.error('only functions that do NOT return values can have `[if $stmt.ctdefine]` tags',
stmt.pos)
}
}
}
ast.StructDecl {
if stmt.is_pub {
c.warn('struct `$stmt.name` $no_pub_in_main_warning', stmt.pos)
}
}
ast.TypeDecl {
// type_decl := stmt as ast.TypeDecl
if stmt is ast.AliasTypeDecl {
alias_decl := stmt as ast.AliasTypeDecl
if alias_decl.is_pub {
c.warn('type alias `$alias_decl.name` $no_pub_in_main_warning',
alias_decl.pos)
}
} else if stmt is ast.SumTypeDecl {
sum_decl := stmt as ast.SumTypeDecl
if sum_decl.is_pub {
c.warn('sum type `$sum_decl.name` $no_pub_in_main_warning', sum_decl.pos)
}
} else if stmt is ast.FnTypeDecl {
fn_decl := stmt as ast.FnTypeDecl
if fn_decl.is_pub {
c.warn('type alias `$fn_decl.name` $no_pub_in_main_warning', fn_decl.pos)
}
}
}
else {}
}
}
return has_main_fn
}
fn (mut c Checker) check_valid_snake_case(name, identifier string, pos token.Position) {
if !c.pref.is_vweb && ( name[0] == `_` || name.contains('._') ) {
c.error('$identifier `$name` cannot start with `_`', pos)
}
if util.contains_capital(name) {
c.error('$identifier `$name` cannot contain uppercase letters, use snake_case instead',
pos)
}
}
fn stripped_name(name string) string {
idx := name.last_index('.') or {
-1
}
return name[(idx + 1)..]
}
fn (mut c Checker) check_valid_pascal_case(name, identifier string, pos token.Position) {
sname := stripped_name(name)
if !sname[0].is_capital() {
c.error('$identifier `$name` must begin with capital letter', pos)
}
}
pub fn (mut c Checker) type_decl(node ast.TypeDecl) {
match node {
ast.AliasTypeDecl {
// TODO Replace `c.file.mod.name != 'time'` by `it.language != .v` once available
if c.file.mod.name != 'time' {
c.check_valid_pascal_case(node.name, 'type alias', node.pos)
}
typ_sym := c.table.get_type_symbol(node.parent_type)
if typ_sym.kind == .placeholder {
c.error("type `$typ_sym.name` doesn't exist", node.pos)
}
}
ast.FnTypeDecl {
c.check_valid_pascal_case(node.name, 'fn type', node.pos)
typ_sym := c.table.get_type_symbol(node.typ)
fn_typ_info := typ_sym.info as table.FnType
fn_info := fn_typ_info.func
ret_sym := c.table.get_type_symbol(fn_info.return_type)
if ret_sym.kind == .placeholder {
c.error("type `$ret_sym.name` doesn't exist", node.pos)
}
for arg in fn_info.args {
arg_sym := c.table.get_type_symbol(arg.typ)
if arg_sym.kind == .placeholder {
c.error("type `$arg_sym.name` doesn't exist", node.pos)
}
}
}
ast.SumTypeDecl {
c.check_valid_pascal_case(node.name, 'sum type', node.pos)
for typ in node.sub_types {
typ_sym := c.table.get_type_symbol(typ)
if typ_sym.kind == .placeholder {
c.error("type `$typ_sym.name` doesn't exist", node.pos)
}
}
}
}
}
pub fn (mut c Checker) interface_decl(decl ast.InterfaceDecl) {
c.check_valid_pascal_case(decl.name, 'interface name', decl.pos)
for method in decl.methods {
c.check_valid_snake_case(method.name, 'method name', method.pos)
}
}
pub fn (mut c Checker) struct_decl(decl ast.StructDecl) {
if decl.language == .v && !c.is_builtin_mod {
c.check_valid_pascal_case(decl.name, 'struct name', decl.pos)
}
for i, field in decl.fields {
if decl.language == .v {
c.check_valid_snake_case(field.name, 'field name', field.pos)
}
for j in 0 .. i {
if field.name == decl.fields[j].name {
c.error('field name `$field.name` duplicate', field.pos)
}
}
sym := c.table.get_type_symbol(field.typ)
if sym.kind == .placeholder && decl.language != .c && !sym.name.starts_with('C.') {
c.error('unknown type `$sym.name`', field.pos)
}
if sym.kind == .array {
array_info := sym.array_info()
elem_sym := c.table.get_type_symbol(array_info.elem_type)
if elem_sym.kind == .placeholder {
c.error('unknown type `$elem_sym.name`', field.pos)
}
}
if sym.kind == .struct_ {
info := sym.info as table.Struct
if info.is_ref_only && !field.typ.is_ptr() {
c.error('`$sym.name` type can only be used as a reference: `&$sym.name`',
field.pos)
}
}
if field.has_default_expr {
c.expected_type = field.typ
field_expr_type := c.expr(field.default_expr)
if !c.check_types(field_expr_type, field.typ) {
field_expr_type_sym := c.table.get_type_symbol(field_expr_type)
field_type_sym := c.table.get_type_symbol(field.typ)
c.error('default expression for field `$field.name` ' +
'has type `$field_expr_type_sym.name`, but should be `$field_type_sym.name`', field.default_expr.position())
}
}
}
}
pub fn (mut c Checker) struct_init(mut struct_init ast.StructInit) table.Type {
// typ := c.table.find_type(struct_init.typ.typ.name) or {
// c.error('unknown struct: $struct_init.typ.typ.name', struct_init.pos)
// panic('')
// }
if struct_init.typ == table.void_type {
// Short syntax `({foo: bar})`
if c.expected_type == table.void_type {
c.error('unexpected short struct syntax', struct_init.pos)
return table.void_type
}
struct_init.typ = c.expected_type
}
type_sym := c.table.get_type_symbol(struct_init.typ)
if type_sym.kind == .interface_ {
c.error('cannot instantiate interface `$type_sym.name`', struct_init.pos)
}
if type_sym.kind == .alias {
info := type_sym.info as table.Alias
if info.parent_type.is_number() {
c.error('cannot instantiate number type alias `$type_sym.name`', struct_init.pos)
return table.void_type
}
}
if !type_sym.is_public && type_sym.kind != .placeholder && type_sym.mod != c.mod {
c.error('type `$type_sym.name` is private', struct_init.pos)
}
// println('check struct $typ_sym.name')
match type_sym.kind {
.placeholder {
c.error('unknown struct: $type_sym.name', struct_init.pos)
}
// string & array are also structs but .kind of string/array
.struct_, .string, .array, .alias {
mut info := table.Struct{}
if type_sym.kind == .alias {
info_t := type_sym.info as table.Alias
sym := c.table.get_type_symbol(info_t.parent_type)
if sym.kind != .struct_ {
c.error('alias type name: $sym.name is not struct type', struct_init.pos)
}
info = sym.info as table.Struct
} else {
info = type_sym.info as table.Struct
}
if struct_init.is_short && struct_init.fields.len > info.fields.len {
c.error('too many fields', struct_init.pos)
}
mut inited_fields := []string{}
for i, field in struct_init.fields {
mut info_field := table.Field{}
mut field_name := ''
if struct_init.is_short {
if i >= info.fields.len {
// It doesn't make sense to check for fields that don't exist.
// We should just stop here.
break
}
info_field = info.fields[i]
field_name = info_field.name
struct_init.fields[i].name = field_name
} else {
field_name = field.name
mut exists := false
for f in info.fields {
if f.name == field_name {
info_field = f
exists = true
break
}
}
if !exists {
c.error('unknown field `$field.name` in struct literal of type `$type_sym.name`',
field.pos)
continue
}
if field_name in inited_fields {
c.error('duplicate field name in struct literal: `$field_name`',
field.pos)
continue
}
}
inited_fields << field_name
c.expected_type = info_field.typ
expr_type := c.expr(field.expr)
expr_type_sym := c.table.get_type_symbol(expr_type)
field_type_sym := c.table.get_type_symbol(info_field.typ)
if !c.check_types(expr_type, info_field.typ) && expr_type != table.void_type &&
expr_type_sym.kind != .placeholder {
c.error('!cannot assign $expr_type_sym.kind `$expr_type_sym.name` as `$field_type_sym.name` for field `$info_field.name`',
field.pos)
}
if info_field.typ.is_ptr() && !expr_type.is_ptr() && !expr_type.is_pointer() &&
!expr_type.is_number() {
c.error('ref', field.pos)
}
struct_init.fields[i].typ = expr_type
struct_init.fields[i].expected_type = info_field.typ
}
// Check uninitialized refs
for field in info.fields {
if field.has_default_expr || field.name in inited_fields {
continue
}
if field.typ.is_ptr() {
c.warn('reference field `${type_sym.name}.$field.name` must be initialized',
struct_init.pos)
}
}
}
else {}
}
return struct_init.typ
}
pub fn (mut c Checker) infix_expr(mut infix_expr ast.InfixExpr) table.Type {
// println('checker: infix expr(op $infix_expr.op.str())')
former_expected_type := c.expected_type
defer {
c.expected_type = former_expected_type
}
c.expected_type = table.void_type
mut left_type := c.expr(infix_expr.left)
// left_type = c.unwrap_genric(c.expr(infix_expr.left))
infix_expr.left_type = left_type
c.expected_type = left_type
right_type := c.expr(infix_expr.right)
// right_type = c.unwrap_genric(c.expr(infix_expr.right))
infix_expr.right_type = right_type
right := c.table.get_type_symbol(right_type)
left := c.table.get_type_symbol(left_type)
left_default := c.table.get_type_symbol(c.table.mktyp(left_type))
left_pos := infix_expr.left.position()
right_pos := infix_expr.right.position()
mut return_type := left_type
// Single side check
// Place these branches according to ops' usage frequency to accelerate.
// TODO: First branch includes ops where single side check is not needed, or needed but hasn't been implemented.
// TODO: Some of the checks are not single side. Should find a better way to organize them.
match infix_expr.op {
// .eq, .ne, .gt, .lt, .ge, .le, .and, .logical_or, .dot, .key_as, .right_shift {}
.key_in, .not_in {
match right.kind {
.array {
right_sym := c.table.get_type_symbol(c.table.mktyp(right.array_info().elem_type))
if left_default.kind != right_sym.kind {
c.error('the data type on the left of `$infix_expr.op.str()` (`$left.name`) does not match the array item type (`$right_sym.name`)',
infix_expr.pos)
}
}
.map {
key_sym := c.table.get_type_symbol(c.table.mktyp(right.map_info().key_type))
if left_default.kind != key_sym.kind {
c.error('the data type on the left of `$infix_expr.op.str()` (`$left.name`) does not match the map key type `$key_sym.name`',
infix_expr.pos)
}
}
.string {
if left.kind != .string {
c.error('the data type on the left of `$infix_expr.op.str()` must be a string (is `$left.name`)',
infix_expr.pos)
}
}
else {
c.error('`$infix_expr.op.str()` can only be used with an array/map/string',
infix_expr.pos)
}
}
return table.bool_type
}
.plus, .minus, .mul, .div, .mod, .xor, .amp, .pipe { // binary operators that expect matching types
if left.kind in [.array, .array_fixed, .map, .struct_] {
if left.has_method(infix_expr.op.str()) {
return_type = left_type
} else {
c.error('mismatched types `$left.name` and `$right.name`', left_pos)
}
} else if right.kind in [.array, .array_fixed, .map, .struct_] {
if right.has_method(infix_expr.op.str()) {
return_type = right_type
} else {
c.error('mismatched types `$left.name` and `$right.name`', right_pos)
}
} else {
promoted_type := c.promote(c.table.unalias_num_type(left_type), c.table.unalias_num_type(right_type))
if promoted_type.idx() == table.void_type_idx {
c.error('mismatched types `$left.name` and `$right.name`', infix_expr.pos)
} else if promoted_type.is_float() {
if infix_expr.op in [.mod, .xor, .amp, .pipe] {
side := if left_type == promoted_type { 'left' } else { 'right' }
pos := if left_type == promoted_type { left_pos } else { right_pos }
name := if left_type == promoted_type { left.name } else { right.name }
if infix_expr.op == .mod {
c.error('float modulo not allowed, use math.fmod() instead',
pos)
} else {
c.error('$side type of `$infix_expr.op.str()` cannot be non-integer type $name',
pos)
}
}
}
if infix_expr.op in [.div, .mod] {
if (infix_expr.right is ast.IntegerLiteral &&
infix_expr.right.str() == '0') ||
(infix_expr.right is ast.FloatLiteral && infix_expr.right.str().f64() == 0.0) {
oper := if infix_expr.op == .div { 'division' } else { 'modulo' }
c.error('$oper by zero', right_pos)
}
}
return_type = promoted_type
}
}
.left_shift {
if left.kind == .array {
// `array << elm`
c.fail_if_immutable(infix_expr.left)
left_value_type := c.table.value_type(left_type)
left_value_sym := c.table.get_type_symbol(left_value_type)
if left_value_sym.kind == .interface_ {
if right.kind != .array {
// []Animal << Cat
c.type_implements(right_type, left_value_type, right_pos)
} else {
// []Animal << Cat
c.type_implements(c.table.value_type(right_type), left_value_type,
right_pos)
}
return table.void_type
}
// the expressions have different types (array_x and x)
if c.check_types(right_type, left_value_type) { // , right_type) {
// []T << T
return table.void_type
}
if right.kind == .array &&
c.check_types(left_value_type, c.table.value_type(right_type)) {
// []T << []T
return table.void_type
}
s := left.name.replace('array_', '[]')
c.error('cannot append `$right.name` to `$s`', right_pos)
return table.void_type
} else {
return c.check_shift(left_type, right_type, left_pos, right_pos)
}
}
.right_shift {
return c.check_shift(left_type, right_type, left_pos, right_pos)
}
.key_is, .not_is {
type_expr := infix_expr.right as ast.Type
typ_sym := c.table.get_type_symbol(type_expr.typ)
if typ_sym.kind == .placeholder {
c.error('$infix_expr.op.str(): type `$typ_sym.name` does not exist', type_expr.pos)
}
if left.kind != .interface_ && left.kind != .sum_type {
c.error('`$infix_expr.op.str()` can only be used with interfaces and sum types',
type_expr.pos)
}
return table.bool_type
}
else {
// use `()` to make the boolean expression clear error
// for example: `(a && b) || c` instead of `a && b || c`
if infix_expr.op in [.logical_or, .and] {
if infix_expr.left is ast.InfixExpr {
e := infix_expr.left as ast.InfixExpr
if e.op in [.logical_or, .and] && e.op != infix_expr.op {
c.error('use `()` to make the boolean expression clear', infix_expr.pos)
}
}
}
}
}
// TODO: Absorb this block into the above single side check block to accelerate.
if left_type == table.bool_type && infix_expr.op !in [.eq, .ne, .logical_or, .and] {
c.error('bool types only have the following operators defined: `==`, `!=`, `||`, and `&&`',
infix_expr.pos)
} else if left_type == table.string_type &&
infix_expr.op !in [.plus, .eq, .ne, .lt, .gt, .le, .ge] {
// TODO broken !in
c.error('string types only have the following operators defined: `==`, `!=`, `<`, `>`, `<=`, `>=`, and `+`',
infix_expr.pos)
}
// Dual sides check (compatibility check)
if !c.symmetric_check(right_type, left_type) {
// for type-unresolved consts
if left_type == table.void_type || right_type == table.void_type {
return table.void_type
}
c.error('infix expr: cannot use `$right.name` (right expression) as `$left.name`',
infix_expr.pos)
}
return if infix_expr.op.is_relational() {
table.bool_type
} else {
return_type
}
}
fn (mut c Checker) fail_if_immutable(expr ast.Expr) {
match expr {
ast.CastExpr {
// TODO
return
}
ast.Ident {
scope := c.file.scope.innermost(expr.pos.pos)
if v := scope.find_var(expr.name) {
if !v.is_mut && !v.typ.is_ptr() {
c.error('`$expr.name` is immutable, declare it with `mut` to make it mutable',
expr.pos)
}
v.is_changed = true
} else if expr.name in c.const_names {
c.error('cannot modify constant `$expr.name`', expr.pos)
}
}
ast.IndexExpr {
c.fail_if_immutable(expr.left)
}
ast.ParExpr {
c.fail_if_immutable(expr.expr)
}
ast.PrefixExpr {
c.fail_if_immutable(expr.right)
}
ast.SelectorExpr {
// retrieve table.Field
if expr.expr_type == 0 {
c.error('0 type in SelectorExpr', expr.pos)
return
}
typ_sym := c.table.get_type_symbol(c.unwrap_generic(expr.expr_type))
match typ_sym.kind {
.struct_ {
struct_info := typ_sym.info as table.Struct
field_info := struct_info.find_field(expr.field_name) or {
type_str := c.table.type_to_str(expr.expr_type)
c.error('unknown field `${type_str}.$expr.field_name`', expr.pos)
return
}
if !field_info.is_mut {
type_str := c.table.type_to_str(expr.expr_type)
c.error('field `$expr.field_name` of struct `$type_str` is immutable',
expr.pos)
}
c.fail_if_immutable(expr.expr)
}
.array, .string {
// This should only happen in `builtin`
// TODO Remove `crypto.rand` when possible (see vlib/crypto/rand/rand.v,
// if `c_array_to_bytes_tmp` doesn't exist, then it's safe to remove it)
if c.file.mod.name !in ['builtin', 'crypto.rand'] {
c.error('`$typ_sym.kind` can not be modified', expr.pos)
}
}
else {
c.error('unexpected symbol `$typ_sym.kind`', expr.pos)
}
}
}
ast.CallExpr {
// TODO: should only work for builtin method
if expr.name == 'slice' {
return
} else {
c.error('cannot use function call as mut', expr.pos)
}
}
ast.ArrayInit {
return
}
else {
c.error('unexpected expression `${typeof(expr)}`', expr.position())
}
}
}
pub fn (mut c Checker) call_expr(mut call_expr ast.CallExpr) table.Type {
c.stmts(call_expr.or_block.stmts)
if call_expr.is_method {
return c.call_method(call_expr)
}
return c.call_fn(call_expr)
}
fn (mut c Checker) check_map_and_filter(is_map bool, elem_typ table.Type, call_expr ast.CallExpr) {
elem_sym := c.table.get_type_symbol(elem_typ)
match call_expr.args[0].expr {
ast.AnonFn {
if it.decl.args.len > 1 {
c.error('function needs exactly 1 argument', call_expr.pos)
} else if is_map && (it.decl.return_type != elem_typ || it.decl.args[0].typ != elem_typ) {
c.error('type mismatch, should use `fn(a $elem_sym.name) $elem_sym.name {...}`',
call_expr.pos)
} else if !is_map && (it.decl.return_type != table.bool_type ||
it.decl.args[0].typ != elem_typ) {
c.error('type mismatch, should use `fn(a $elem_sym.name) bool {...}`',
call_expr.pos)
}
}
ast.Ident {
if it.kind == .function {
func := c.table.find_fn(it.name) or {
c.error('$it.name is not exist', it.pos)
return
}
if func.args.len > 1 {
c.error('function needs exactly 1 argument', call_expr.pos)
} else if is_map && (func.return_type != elem_typ || func.args[0].typ != elem_typ) {
c.error('type mismatch, should use `fn(a $elem_sym.name) $elem_sym.name {...}`',
call_expr.pos)
} else if !is_map && (func.return_type != table.bool_type ||
func.args[0].typ != elem_typ) {
c.error('type mismatch, should use `fn(a $elem_sym.name) bool {...}`',
call_expr.pos)
}
}
}
else {}
}
}
pub fn (mut c Checker) call_method(mut call_expr ast.CallExpr) table.Type {
left_type := c.expr(call_expr.left)
is_generic := left_type.has_flag(.generic)
call_expr.left_type = left_type
left_type_sym := c.table.get_type_symbol(c.unwrap_generic(left_type))
method_name := call_expr.name
if left_type.has_flag(.optional) {
c.error('optional type cannot be called directly', call_expr.left.position())
return table.void_type
}
// TODO: remove this for actual methods, use only for compiler magic
// FIXME: Argument count != 1 will break these
if left_type_sym.kind == .array &&
method_name in ['filter', 'clone', 'repeat', 'reverse', 'map', 'slice'] {
mut elem_typ := table.void_type
if method_name in ['filter', 'map'] {
array_info := left_type_sym.info as table.Array
mut scope := c.file.scope.innermost(call_expr.pos.pos)
scope.update_var_type('it', array_info.elem_type)
elem_typ = array_info.elem_type
}
// map/filter are supposed to have 1 arg only
mut arg_type := left_type
for arg in call_expr.args {
arg_type = c.expr(arg.expr)
}
call_expr.return_type = left_type
call_expr.receiver_type = left_type
if method_name == 'map' {
// check fn
c.check_map_and_filter(true, elem_typ, call_expr)
arg_sym := c.table.get_type_symbol(arg_type)
// FIXME: match expr failed for now
mut ret_type := 0
match arg_sym.info {
table.FnType { ret_type = it.func.return_type }
else { ret_type = arg_type }
}
call_expr.return_type = c.table.find_or_register_array(ret_type, 1, c.mod)
} else if method_name == 'filter' {
// check fn
c.check_map_and_filter(false, elem_typ, call_expr)
} else if method_name == 'clone' {
// need to return `array_xxx` instead of `array`
// in ['clone', 'str'] {
call_expr.receiver_type = left_type.to_ptr()
// call_expr.return_type = call_expr.receiver_type
}
return call_expr.return_type
} else if left_type_sym.kind == .map && method_name == 'clone' {
call_expr.return_type = left_type
call_expr.receiver_type = left_type.to_ptr()
return call_expr.return_type
} else if left_type_sym.kind == .array && method_name in ['first', 'last'] {
info := left_type_sym.info as table.Array
call_expr.return_type = info.elem_type
call_expr.receiver_type = left_type
return call_expr.return_type
} else if left_type_sym.kind == .array && method_name in ['insert', 'prepend'] {
array_info := left_type_sym.info as table.Array
elem_sym := c.table.get_type_symbol(array_info.elem_type)
arg_expr := if method_name == 'insert' { call_expr.args[1].expr } else { call_expr.args[0].expr }
arg_sym := c.table.get_type_symbol(c.expr(arg_expr))
if arg_sym.kind == .array {
info := arg_sym.info as table.Array
sym := c.table.get_type_symbol(info.elem_type)
if sym.kind != elem_sym.kind &&
((elem_sym.kind == .int && sym.kind != .any_int) ||
(elem_sym.kind == .f64 && sym.kind != .any_float)) {
c.error('type mismatch, should use `$elem_sym.name[]`', arg_expr.position())
}
} else {
if arg_sym.kind != elem_sym.kind &&
((elem_sym.kind == .int && arg_sym.kind != .any_int) ||
(elem_sym.kind == .f64 && arg_sym.kind != .any_float)) {
c.error('type mismatch, should use `$elem_sym.name`', arg_expr.position())
}
}
}
if method := c.table.type_find_method(left_type_sym, method_name) {
if !method.is_pub && !c.is_builtin_mod && !c.pref.is_test &&
left_type_sym.mod != c.mod && left_type_sym.mod != '' { // method.mod != c.mod {
// If a private method is called outside of the module
// its receiver type is defined in, show an error.
// println('warn $method_name lef.mod=$left_type_sym.mod c.mod=$c.mod')
c.error('method `${left_type_sym.name}.$method_name` is private', call_expr.pos)
}
if method.args[0].is_mut {
c.fail_if_immutable(call_expr.left)
// call_expr.is_mut = true
}
if method.return_type == table.void_type &&
method.ctdefine.len > 0 && method.ctdefine !in c.pref.compile_defines {
call_expr.should_be_skipped = true
}
nr_args := if method.args.len == 0 { 0 } else { method.args.len - 1 }
min_required_args := method.args.len - if method.is_variadic && method.args.len > 1 { 2 } else { 1 }
if call_expr.args.len < min_required_args {
c.error('too few arguments in call to `${left_type_sym.name}.$method_name` ($call_expr.args.len instead of $min_required_args)',
call_expr.pos)
} else if !method.is_variadic && call_expr.args.len > nr_args {
c.error('!too many arguments in call to `${left_type_sym.name}.$method_name` ($call_expr.args.len instead of $nr_args)',
call_expr.pos)
return method.return_type
}
// if method_name == 'clone' {
// println('CLONE nr args=$method.args.len')
// }
// call_expr.args << method.args[0].typ
// call_expr.exp_arg_types << method.args[0].typ
for i, arg in call_expr.args {
exp_arg_typ := if method.is_variadic && i >= method.args.len - 1 { method.args[method.args.len -
1].typ } else { method.args[i + 1].typ }
exp_arg_sym := c.table.get_type_symbol(exp_arg_typ)
c.expected_type = exp_arg_typ
got_arg_typ := c.expr(arg.expr)
call_expr.args[i].typ = got_arg_typ
if method.is_variadic && got_arg_typ.has_flag(.variadic) && call_expr.args.len - 1 > i {
c.error('when forwarding a varg variable, it must be the final argument',
call_expr.pos)
}
if exp_arg_sym.kind == .interface_ {
c.type_implements(got_arg_typ, exp_arg_typ, arg.expr.position())
continue
}
if !c.check_types(got_arg_typ, exp_arg_typ) {
got_arg_sym := c.table.get_type_symbol(got_arg_typ)
// str method, allow type with str method if fn arg is string
// if exp_arg_sym.kind == .string && got_arg_sym.has_method('str') {
// continue
// }
if got_arg_typ != table.void_type {
c.error('cannot use type `$got_arg_sym.str()` as type `$exp_arg_sym.str()` in argument ${i+1} to `${left_type_sym.name}.$method_name`',
call_expr.pos)
}
}
}
// TODO: typ optimize.. this node can get processed more than once
if call_expr.expected_arg_types.len == 0 {
for i in 1 .. method.args.len {
call_expr.expected_arg_types << method.args[i].typ
}
}
if is_generic {
// We need the receiver to be T in cgen.
// TODO: cant we just set all these to the concrete type in checker? then no need in gen
call_expr.receiver_type = left_type.derive(method.args[0].typ).set_flag(.generic)
} else {
call_expr.receiver_type = method.args[0].typ
}
call_expr.return_type = method.return_type
return method.return_type
}
// TODO: str methods
if method_name == 'str' {
call_expr.receiver_type = left_type
call_expr.return_type = table.string_type
return table.string_type
}
// call struct field fn type
// TODO: can we use SelectorExpr for all? this dosent really belong here
if field := c.table.struct_find_field(left_type_sym, method_name) {
field_type_sym := c.table.get_type_symbol(field.typ)
if field_type_sym.kind == .function {
call_expr.is_method = false
info := field_type_sym.info as table.FnType
call_expr.return_type = info.func.return_type
// TODO: check args (do it once for all of the above)
for arg in call_expr.args {
c.expr(arg.expr)
}
return info.func.return_type
}
}
if left_type != table.void_type {
c.error('unknown method: `${left_type_sym.name}.$method_name`', call_expr.pos)
}
return table.void_type
}
pub fn (mut c Checker) call_fn(mut call_expr ast.CallExpr) table.Type {
if call_expr.name == 'panic' {
c.returns = true
}
fn_name := call_expr.name
if fn_name == 'main' {
c.error('the `main` function cannot be called in the program', call_expr.pos)
}
if fn_name == 'typeof' {
// TODO: impl typeof properly (probably not going to be a fn call)
return table.string_type
}
if call_expr.generic_type.has_flag(.generic) {
if c.mod != '' {
// Need to prepend the module when adding a generic type to a function
// `fn_gen_types['mymod.myfn'] == ['string', 'int']`
c.table.register_fn_gen_type(c.mod + '.' + fn_name, c.cur_generic_type)
} else {
c.table.register_fn_gen_type(fn_name, c.cur_generic_type)
}
// call_expr.generic_type = c.unwrap_generic(call_expr.generic_type)
}
// if c.fileis('json_test.v') {
// println(fn_name)
// }
if fn_name == 'json.encode' {
} else if fn_name == 'json.decode' {
expr := call_expr.args[0].expr
if !(expr is ast.Type) {
typ := typeof(expr)
c.error('json.decode: first argument needs to be a type, got `$typ`', call_expr.pos)
return table.void_type
}
c.expected_type = table.string_type
call_expr.args[1].typ = c.expr(call_expr.args[1].expr)
if call_expr.args[1].typ != table.string_type {
c.error('json.decode: second argument needs to be a string', call_expr.pos)
}
typ := expr as ast.Type
ret_type := typ.typ.set_flag(.optional)
call_expr.return_type = ret_type
return ret_type
}
// look for function in format `mod.fn` or `fn` (builtin)
mut f := table.Fn{}
mut found := false
mut found_in_args := false
// try prefix with current module as it would have never gotten prefixed
if !fn_name.contains('.') && call_expr.mod !in ['builtin'] {
name_prefixed := '${call_expr.mod}.$fn_name'
if f1 := c.table.find_fn(name_prefixed) {
call_expr.name = name_prefixed
found = true
f = f1
}
}
// already prefixed (mod.fn) or C/builtin/main
if !found {
if f1 := c.table.find_fn(fn_name) {
found = true
f = f1
}
}
// check for arg (var) of fn type
if !found {
scope := c.file.scope.innermost(call_expr.pos.pos)
if v := scope.find_var(fn_name) {
if v.typ != 0 {
vts := c.table.get_type_symbol(v.typ)
if vts.kind == .function {
info := vts.info as table.FnType
f = info.func
found = true
found_in_args = true
}
}
}
}
if !found {
c.error('unknown function: $fn_name', call_expr.pos)
return table.void_type
}
if !found_in_args {
scope := c.file.scope.innermost(call_expr.pos.pos)
if _ := scope.find_var(fn_name) {
c.error('ambiguous call to: `$fn_name`, may refer to fn `$fn_name` or variable `$fn_name`',
call_expr.pos)
}
}
if !f.is_pub && f.language == .v && f.name.len > 0 && f.mod.len > 0 && f.mod != c.mod {
c.error('function `$f.name` is private. curmod=$c.mod fmod=$f.mod', call_expr.pos)
}
if f.is_deprecated {
c.warn('function `$f.name` has been deprecated', call_expr.pos)
}
if f.is_generic {
rts := c.table.get_type_symbol(f.return_type)
if rts.kind == .struct_ {
rts_info := rts.info as table.Struct
if rts_info.generic_types.len > 0 {
// TODO: multiple generic types
// for gt in rts_info.generic_types {
// gtss := c.table.get_type_symbol(gt)
// }
gts := c.table.get_type_symbol(call_expr.generic_type)
nrt := '${rts.name}<$gts.name>'
idx := c.table.type_idxs[nrt]
if idx == 0 {
c.error('unknown type: $nrt', call_expr.pos)
}
call_expr.return_type = table.new_type(idx).derive(f.return_type)
}
}
}
else {
call_expr.return_type = f.return_type
}
if f.return_type == table.void_type &&
f.ctdefine.len > 0 && f.ctdefine !in c.pref.compile_defines {
call_expr.should_be_skipped = true
}
if f.language != .v || call_expr.language != .v {
for arg in call_expr.args {
c.expr(arg.expr)
}
return f.return_type
}
min_required_args := if f.is_variadic { f.args.len - 1 } else { f.args.len }
if call_expr.args.len < min_required_args {
c.error('too few arguments in call to `$fn_name` ($call_expr.args.len instead of $min_required_args)',
call_expr.pos)
} else if !f.is_variadic && call_expr.args.len > f.args.len {
c.error('too many arguments in call to `$fn_name` ($call_expr.args.len instead of $f.args.len)',
call_expr.pos)
return f.return_type
}
// println can print anything
if (fn_name == 'println' || fn_name == 'print') && call_expr.args.len > 0 {
c.expected_type = table.string_type
call_expr.args[0].typ = c.expr(call_expr.args[0].expr)
// check optional argument
if call_expr.args[0].typ.has_flag(.optional) {
c.error('cannot print optional type', call_expr.args[0].expr.position())
}
/*
// TODO: optimize `struct T{} fn (t &T) str() string {return 'abc'} mut a := []&T{} a << &T{} println(a[0])`
// It currently generates:
// `println(T_str_no_ptr(*(*(T**)array_get(a, 0))));`
// ... which works, but could be just:
// `println(T_str(*(T**)array_get(a, 0)));`
prexpr := call_expr.args[0].expr
prtyp := call_expr.args[0].typ
prtyp_sym := c.table.get_type_symbol(prtyp)
prtyp_is_ptr := prtyp.is_ptr()
prhas_str, prexpects_ptr, prnr_args := prtyp_sym.str_method_info()
eprintln('>>> println hack typ: ${prtyp} | sym.name: ${prtyp_sym.name} | is_ptr: $prtyp_is_ptr | has_str: $prhas_str | expects_ptr: $prexpects_ptr | nr_args: $prnr_args | expr: ${prexpr.str()} ')
*/
return f.return_type
}
// TODO: typ optimize.. this node can get processed more than once
if call_expr.expected_arg_types.len == 0 {
for arg in f.args {
call_expr.expected_arg_types << arg.typ
}
}
for i, call_arg in call_expr.args {
arg := if f.is_variadic && i >= f.args.len - 1 { f.args[f.args.len - 1] } else { f.args[i] }
c.expected_type = arg.typ
typ := c.expr(call_arg.expr)
call_expr.args[i].typ = typ
typ_sym := c.table.get_type_symbol(typ)
arg_typ_sym := c.table.get_type_symbol(arg.typ)
if f.is_variadic && typ.has_flag(.variadic) && call_expr.args.len - 1 > i {
c.error('when forwarding a varg variable, it must be the final argument',
call_expr.pos)
}
if call_arg.is_mut {
c.fail_if_immutable(call_arg.expr)
if !arg.is_mut {
c.error('`$arg.name` argument is not mutable, `mut` is not needed`', call_arg.expr.position())
}
} else {
if arg.is_mut {
c.error('`$arg.name` is a mutable argument, you need to provide `mut`: `${call_expr.name}(mut ...)`',
call_arg.expr.position())
}
}
// Handle expected interface
if arg_typ_sym.kind == .interface_ {
c.type_implements(typ, arg.typ, call_arg.expr.position())
continue
}
// Handle expected interface array
/*
if exp_type_sym.kind == .array && t.get_type_symbol(t.value_type(exp_idx)).kind == .interface_ {
return true
}
*/
if !c.check_types(typ, arg.typ) {
// str method, allow type with str method if fn arg is string
if arg_typ_sym.kind == .string && typ_sym.has_method('str') {
continue
}
if typ_sym.kind == .void && arg_typ_sym.kind == .string {
continue
}
if f.is_generic {
continue
}
if typ_sym.kind == .array_fixed {
}
c.error('cannot use type `$typ_sym.str()` as type `$arg_typ_sym.str()` in argument ${i+1} to `$fn_name`',
call_expr.pos)
}
}
if call_expr.generic_type != table.void_type && f.return_type != 0 { // table.t_type {
// Handle `foo<T>() T` => `foo<int>() int` => return int
return_sym := c.table.get_type_symbol(f.return_type)
if return_sym.name == 'T' {
return call_expr.generic_type
} else if return_sym.kind == .array {
elem_info := return_sym.info as table.Array
elem_sym := c.table.get_type_symbol(elem_info.elem_type)
if elem_sym.name == 'T' {
idx := c.table.find_or_register_array(call_expr.generic_type, 1, return_sym.mod)
return table.new_type(idx)
}
}
}
if f.is_generic {
return call_expr.return_type
}
return f.return_type
}
fn (mut c Checker) type_implements(typ, inter_typ table.Type, pos token.Position) bool {
typ_sym := c.table.get_type_symbol(typ)
inter_sym := c.table.get_type_symbol(inter_typ)
styp := c.table.type_to_str(typ)
for imethod in inter_sym.methods {
if method := typ_sym.find_method(imethod.name) {
if !imethod.is_same_method_as(method) {
c.error('`$styp` incorrectly implements method `$imethod.name` of interface `$inter_sym.name`, expected `${c.table.fn_to_str(imethod)}`',
pos)
return false
}
continue
}
c.error("`$styp` doesn't implement method `$imethod.name`", pos)
}
mut inter_info := inter_sym.info as table.Interface
if typ !in inter_info.types && typ_sym.kind != .interface_ {
inter_info.types << typ
}
return true
}
// return the actual type of the expression, once the optional is handled
pub fn (mut c Checker) check_expr_opt_call(expr ast.Expr, ret_type table.Type) table.Type {
if expr is ast.CallExpr {
call_expr := expr as ast.CallExpr
if call_expr.return_type.has_flag(.optional) {
if call_expr.or_block.kind == .absent {
if ret_type != table.void_type {
c.error('${call_expr.name}() returns an option, but you missed to add an `or {}` block to it',
call_expr.pos)
}
} else {
c.check_or_expr(call_expr.or_block, ret_type)
}
// remove optional flag
// return ret_type.clear_flag(.optional)
// TODO: currently unwrapped in assign, would need to refactor assign to unwrap here
return ret_type
} else if call_expr.or_block.kind == .block {
c.error('unexpected `or` block, the function `$call_expr.name` does not return an optional',
call_expr.pos)
} else if call_expr.or_block.kind == .propagate {
c.error('unexpected `?`, the function `$call_expr.name`, does not return an optional',
call_expr.pos)
}
}
return ret_type
}
pub fn (mut c Checker) check_or_expr(mut or_expr ast.OrExpr, ret_type table.Type) {
if or_expr.kind == .propagate {
if !c.cur_fn.return_type.has_flag(.optional) && c.cur_fn.name != 'main.main' {
c.error('to propagate the optional call, `$c.cur_fn.name` must itself return an optional',
or_expr.pos)
}
return
}
stmts_len := or_expr.stmts.len
if stmts_len == 0 {
if ret_type != table.void_type {
// x := f() or {}
c.error('assignment requires a non empty `or {}` block', or_expr.pos)
return
}
// allow `f() or {}`
return
}
last_stmt := or_expr.stmts[stmts_len - 1]
if ret_type != table.void_type {
if !(last_stmt is ast.Return || last_stmt is ast.BranchStmt || last_stmt is ast.ExprStmt) {
expected_type_name := c.table.get_type_symbol(ret_type).name
c.error('last statement in the `or {}` block should return `$expected_type_name`',
or_expr.pos)
return
}
match last_stmt {
ast.ExprStmt {
last_stmt.typ = c.expr(last_stmt.expr)
type_fits := c.check_types(last_stmt.typ, ret_type)
is_panic_or_exit := is_expr_panic_or_exit(last_stmt.expr)
if type_fits || is_panic_or_exit {
return
}
type_name := c.table.get_type_symbol(last_stmt.typ).name
expected_type_name := c.table.get_type_symbol(ret_type).name
c.error('wrong return type `$type_name` in the `or {}` block, expected `$expected_type_name`',
last_stmt.pos)
return
}
ast.BranchStmt {
if last_stmt.tok.kind !in [.key_continue, .key_break] {
c.error('only break/continue is allowed as a branch statement in the end of an `or {}` block',
last_stmt.tok.position())
return
}
}
else {}
}
return
}
}
fn is_expr_panic_or_exit(expr ast.Expr) bool {
match expr {
ast.CallExpr { return expr.name in ['panic', 'exit'] }
else { return false }
}
}
pub fn (mut c Checker) selector_expr(mut selector_expr ast.SelectorExpr) table.Type {
typ := c.expr(selector_expr.expr)
if typ == table.void_type_idx {
c.error('unknown selector expression', selector_expr.pos)
return table.void_type
}
selector_expr.expr_type = typ
sym := c.table.get_type_symbol(c.unwrap_generic(typ))
field_name := selector_expr.field_name
// variadic
if typ.has_flag(.variadic) {
if field_name == 'len' {
selector_expr.typ = table.int_type
return table.int_type
}
}
if field := c.table.struct_find_field(sym, field_name) {
if sym.mod != c.mod && !field.is_pub {
c.error('field `${sym.name}.$field_name` is not public', selector_expr.pos)
}
selector_expr.typ = field.typ
return field.typ
}
if sym.kind != .struct_ {
if sym.kind != .placeholder {
c.error('`$sym.name` is not a struct', selector_expr.pos)
}
} else {
c.error('type `$sym.name` has no field or method `$field_name`', selector_expr.pos)
}
return table.void_type
}
// TODO: non deferred
pub fn (mut c Checker) return_stmt(mut return_stmt ast.Return) {
c.expected_type = c.cur_fn.return_type
if return_stmt.exprs.len > 0 && c.expected_type == table.void_type {
c.error('too many arguments to return, current function does not return anything',
return_stmt.pos)
return
} else if return_stmt.exprs.len == 0 && !(c.expected_type == table.void_type ||
c.table.get_type_symbol(c.expected_type).kind == .void) {
c.error('too few arguments to return', return_stmt.pos)
return
}
if return_stmt.exprs.len == 0 {
return
}
expected_type := c.unwrap_generic(c.expected_type)
expected_type_sym := c.table.get_type_symbol(expected_type)
exp_is_optional := expected_type.has_flag(.optional)
mut expected_types := [expected_type]
if expected_type_sym.kind == .multi_return {
mr_info := expected_type_sym.info as table.MultiReturn
expected_types = mr_info.types
}
mut got_types := []table.Type{}
for expr in return_stmt.exprs {
typ := c.expr(expr)
// Unpack multi return types
sym := c.table.get_type_symbol(typ)
if sym.kind == .multi_return {
for t in sym.mr_info().types {
got_types << t
}
} else {
got_types << typ
}
}
return_stmt.types = got_types
// allow `none` & `error (Option)` return types for function that returns optional
if exp_is_optional && got_types[0].idx() in [table.none_type_idx, c.table.type_idxs['Option']] {
return
}
if expected_types.len > 0 && expected_types.len != got_types.len {
c.error('wrong number of return arguments', return_stmt.pos)
return
}
for i, exp_type in expected_types {
got_typ := c.unwrap_generic(got_types[i])
if got_typ.has_flag(.optional) && (!exp_type.has_flag(.optional) || c.table.type_to_str(got_typ) !=
c.table.type_to_str(exp_type)) {
pos := return_stmt.exprs[i].position()
c.error('cannot use `${c.table.type_to_str(got_typ)}` as type `${c.table.type_to_str(exp_type)}` in return argument',
pos)
}
if !c.check_types(got_typ, exp_type) {
got_typ_sym := c.table.get_type_symbol(got_typ)
mut exp_typ_sym := c.table.get_type_symbol(exp_type)
pos := return_stmt.exprs[i].position()
if exp_typ_sym.kind == .interface_ {
c.type_implements(got_typ, exp_type, return_stmt.pos)
continue
}
c.error('cannot use `$got_typ_sym.name` as type `$exp_typ_sym.name` in return argument',
pos)
}
}
}
pub fn (mut c Checker) enum_decl(decl ast.EnumDecl) {
c.check_valid_pascal_case(decl.name, 'enum name', decl.pos)
for i, field in decl.fields {
if util.contains_capital(field.name) {
c.error('field name `$field.name` cannot contain uppercase letters, use snake_case instead',
field.pos)
}
for j in 0 .. i {
if field.name == decl.fields[j].name {
c.error('field name `$field.name` duplicate', field.pos)
}
}
if field.has_expr {
match field.expr {
ast.IntegerLiteral {}
ast.PrefixExpr {}
else {
if field.expr is ast.Ident {
expr := field.expr as ast.Ident
if expr.language == .c {
continue
}
}
mut pos := field.expr.position()
if pos.pos == 0 {
pos = field.pos
}
c.error('default value for enum has to be an integer', pos)
}
}
}
}
}
pub fn (mut c Checker) assign_stmt(mut assign_stmt ast.AssignStmt) {
c.expected_type = table.none_type // TODO a hack to make `x := if ... work`
right_first := assign_stmt.right[0]
mut right_len := assign_stmt.right.len
if right_first is ast.CallExpr || right_first is ast.IfExpr || right_first is ast.MatchExpr {
right_type0 := c.expr(right_first)
assign_stmt.right_types = [
c.check_expr_opt_call(right_first, right_type0)
]
right_type_sym0 := c.table.get_type_symbol(right_type0)
if right_type_sym0.kind == .multi_return {
assign_stmt.right_types = right_type_sym0.mr_info().types
right_len = assign_stmt.right_types.len
} else if right_type0 == table.void_type {
right_len = 0
}
}
if assign_stmt.left.len != right_len {
if right_first is ast.CallExpr {
call_expr := assign_stmt.right[0] as ast.CallExpr
c.error('assignment mismatch: $assign_stmt.left.len variable(s) but `${call_expr.name}()` returns $right_len value(s)',
assign_stmt.pos)
} else {
c.error('assignment mismatch: $assign_stmt.left.len variable(s) $right_len value(s)',
assign_stmt.pos)
}
return
}
is_decl := assign_stmt.op == .decl_assign
for i, left in assign_stmt.left {
is_blank_ident := left.is_blank_ident()
mut left_type := table.void_type
if !is_decl && !is_blank_ident {
left_type = c.expr(left)
c.expected_type = c.unwrap_generic(left_type)
}
if assign_stmt.right_types.len < assign_stmt.left.len { // first type or multi return types added above
right_type := c.expr(assign_stmt.right[i])
assign_stmt.right_types << c.check_expr_opt_call(assign_stmt.right[i], right_type)
}
right := if i < assign_stmt.right.len { assign_stmt.right[i] } else { assign_stmt.right[0] }
right_type := assign_stmt.right_types[i]
if is_decl {
left_type = c.table.mktyp(right_type)
// we are unwrapping here instead if check_expr_opt_call currently
if left_type.has_flag(.optional) {
left_type = left_type.clear_flag(.optional)
}
} else {
// Make sure the variable is mutable
c.fail_if_immutable(left)
// left_type = c.expr(left)
}
assign_stmt.left_types << left_type
match left {
ast.Ident {
if left.kind == .blank_ident {
left_type = right_type
assign_stmt.left_types[i] = right_type
if assign_stmt.op !in [.assign, .decl_assign] {
c.error('cannot modify blank `_` identifier', left.pos)
}
} else {
if is_decl {
c.check_valid_snake_case(left.name, 'variable name', left.pos)
}
mut scope := c.file.scope.innermost(assign_stmt.pos.pos)
mut ident_var_info := left.var_info()
ident_var_info.typ = left_type
left.info = ident_var_info
scope.update_var_type(left.name, left_type)
}
}
ast.PrefixExpr {
// Do now allow `*x = y` outside `unsafe`
if left.op == .mul && !c.inside_unsafe {
c.error('modifying variables via deferencing can only be done in `unsafe` blocks',
assign_stmt.pos)
}
}
else {}
}
left_type_unwrapped := c.unwrap_generic(left_type)
right_type_unwrapped := c.unwrap_generic(right_type)
left_sym := c.table.get_type_symbol(left_type_unwrapped)
right_sym := c.table.get_type_symbol(right_type_unwrapped)
// Single side check
match assign_stmt.op {
.assign {} // No need to do single side check for =. But here put it first for speed.
.plus_assign {
if !left_sym.is_number() && left_type != table.string_type && !left_sym.is_pointer() {
c.error('operator += not defined on left operand type `$left_sym.name`',
left.position())
} else if !right_sym.is_number() && right_type != table.string_type &&
!right_sym.is_pointer() {
c.error('operator += not defined on right operand type `$right_sym.name`',
right.position())
}
if right is ast.IntegerLiteral && right.str().int() == 1 {
c.error('use `++` instead of `+= 1`', assign_stmt.pos)
}
}
.minus_assign {
if !left_sym.is_number() && !left_sym.is_pointer() {
c.error('operator -= not defined on left operand type `$left_sym.name`',
left.position())
} else if !right_sym.is_number() && !right_sym.is_pointer() {
c.error('operator -= not defined on right operand type `$right_sym.name`',
right.position())
}
if right is ast.IntegerLiteral && right.str().int() == 1 {
c.error('use `--` instead of `-= 1`', assign_stmt.pos)
}
}
.mult_assign, .div_assign {
if !left_sym.is_number() {
c.error('operator $assign_stmt.op.str() not defined on left operand type `$left_sym.name`',
left.position())
} else if !right_sym.is_number() {
c.error('operator $assign_stmt.op.str() not defined on right operand type `$right_sym.name`',
right.position())
}
}
.and_assign, .or_assign, .xor_assign, .mod_assign, .left_shift_assign, .right_shift_assign {
if !left_sym.is_int() {
c.error('operator $assign_stmt.op.str() not defined on left operand type `$left_sym.name`',
left.position())
} else if !right_sym.is_int() {
c.error('operator $assign_stmt.op.str() not defined on right operand type `$right_sym.name`',
right.position())
}
}
else {}
}
// Dual sides check (compatibility check)
if !is_blank_ident && !c.check_types(right_type_unwrapped, left_type_unwrapped) &&
right_sym.kind != .placeholder {
c.error('cannot assign `$right_sym.name` to `$left.str()` of type `$left_sym.name`',
right.position())
}
}
c.expected_type = table.void_type
}
fn (mut c Checker) check_array_init_para_type(para string, expr ast.Expr, pos token.Position) {
sym := c.table.get_type_symbol(c.expr(expr))
if sym.kind !in [.int, .any_int] {
c.error('array $para needs to be an int', pos)
}
}
pub fn (mut c Checker) array_init(mut array_init ast.ArrayInit) table.Type {
// println('checker: array init $array_init.pos.line_nr $c.file.path')
mut elem_type := table.void_type
// []string - was set in parser
if array_init.typ != table.void_type {
if array_init.exprs.len == 0 {
if array_init.has_cap {
c.check_array_init_para_type('cap', array_init.cap_expr, array_init.pos)
}
if array_init.has_len {
c.check_array_init_para_type('len', array_init.len_expr, array_init.pos)
}
}
sym := c.table.get_type_symbol(array_init.elem_type)
if sym.kind == .placeholder {
c.error('unknown type `$sym.name`', array_init.elem_type_pos)
}
return array_init.typ
}
// a = []
if array_init.exprs.len == 0 {
type_sym := c.table.get_type_symbol(c.expected_type)
if type_sym.kind != .array {
c.error('array_init: no type specified (maybe: `[]Type{}` instead of `[]`)',
array_init.pos)
return table.void_type
}
// TODO: seperate errors once bug is fixed with `x := if expr { ... } else { ... }`
// if c.expected_type == table.void_type {
// c.error('array_init: use `[]Type{}` instead of `[]`', array_init.pos)
// return table.void_type
// }
array_info := type_sym.array_info()
array_init.elem_type = array_info.elem_type
return c.expected_type
}
// [1,2,3]
if array_init.exprs.len > 0 && array_init.elem_type == table.void_type {
mut expected_value_type := table.void_type
mut expecting_interface_array := false
cap := array_init.exprs.len
mut interface_types := []table.Type{cap: cap}
if c.expected_type != 0 {
expected_value_type = c.table.value_type(c.expected_type)
if c.table.get_type_symbol(expected_value_type).kind == .interface_ {
// Array of interfaces? (`[dog, cat]`) Save the interface type (`Animal`)
expecting_interface_array = true
array_init.interface_type = expected_value_type
array_init.is_interface = true
}
}
// expecting_interface_array := c.expected_type != 0 &&
// c.table.get_type_symbol(c.table.value_type(c.expected_type)).kind == .interface_
//
// if expecting_interface_array {
// println('ex $c.expected_type')
// }
for i, expr in array_init.exprs {
typ := c.expr(expr)
if expecting_interface_array {
if i == 0 {
elem_type = expected_value_type
c.expected_type = elem_type
}
interface_types << typ
continue
}
// The first element's type
if i == 0 {
elem_type = c.table.mktyp(typ)
c.expected_type = elem_type
continue
}
if !c.check_types(typ, elem_type) {
elem_type_sym := c.table.get_type_symbol(elem_type)
c.error('expected array element with type `$elem_type_sym.name`', array_init.pos)
}
}
if expecting_interface_array {
array_init.interface_types = interface_types
}
if array_init.is_fixed {
idx := c.table.find_or_register_array_fixed(elem_type, array_init.exprs.len,
1)
array_init.typ = table.new_type(idx)
} else {
sym := c.table.get_type_symbol(elem_type)
idx := c.table.find_or_register_array(elem_type, 1, sym.mod)
array_init.typ = table.new_type(idx)
}
array_init.elem_type = elem_type
} else if array_init.is_fixed && array_init.exprs.len == 1 &&
array_init.elem_type != table.void_type {
// [50]byte
mut fixed_size := 1
match array_init.exprs[0] {
ast.IntegerLiteral {
fixed_size = it.val.int()
}
ast.Ident {
// if obj := c.file.global_scope.find_const(it.name) {
// if obj := scope.find(it.name) {
// scope := c.file.scope.innermost(array_init.pos.pos)
// eprintln('scope: ${scope.str()}')
// scope.find(it.name) or {
// c.error('undefined ident: `$it.name`', array_init.pos)
// }
mut full_const_name := it.mod + '.' + it.name
if obj := c.file.global_scope.find_const(full_const_name) {
if cint := const_int_value(obj) {
fixed_size = cint
}
} else {
c.error('non existant integer const $full_const_name while initializing the size of a static array',
array_init.pos)
}
}
else {
c.error('expecting `int` for fixed size', array_init.pos)
}
}
idx := c.table.find_or_register_array_fixed(array_init.elem_type, fixed_size,
1)
array_type := table.new_type(idx)
array_init.typ = array_type
}
return array_init.typ
}
fn const_int_value(cfield ast.ConstField) ?int {
if cint := is_const_integer(cfield) {
return cint.val.int()
}
return none
}
fn is_const_integer(cfield ast.ConstField) ?ast.IntegerLiteral {
match cfield.expr {
ast.IntegerLiteral { return it }
else {}
}
return none
}
fn (mut c Checker) stmt(node ast.Stmt) {
// c.expected_type = table.void_type
match mut node {
ast.AssertStmt {
assert_type := c.expr(node.expr)
if assert_type != table.bool_type_idx {
atype_name := c.table.get_type_symbol(assert_type).name
c.error('assert can be used only with `bool` expressions, but found `$atype_name` instead',
node.pos)
}
}
// ast.Attr {}
ast.AssignStmt {
c.assign_stmt(mut node)
}
ast.Block {
c.stmts(node.stmts)
}
ast.BranchStmt {
if c.in_for_count == 0 {
c.error('$node.tok.lit statement not within a loop', node.tok.position())
}
}
ast.CompIf {
// c.expr(it.cond)
c.stmts(node.stmts)
if node.has_else {
c.stmts(node.else_stmts)
}
}
ast.ConstDecl {
mut field_names := []string{}
mut field_order := []int{}
for i, field in node.fields {
// TODO Check const name once the syntax is decided
if field.name in c.const_names {
c.error('field name `$field.name` duplicate', field.pos)
}
c.const_names << field.name
field_names << field.name
field_order << i
}
mut needs_order := false
mut done_fields := []int{}
for i, field in node.fields {
c.const_decl = field.name
c.const_deps << field.name
typ := c.expr(field.expr)
node.fields[i].typ = c.table.mktyp(typ)
for cd in c.const_deps {
for j, f in node.fields {
if j != i && cd in field_names && cd == f.name && j !in done_fields {
needs_order = true
x := field_order[j]
field_order[j] = field_order[i]
field_order[i] = x
break
}
}
}
done_fields << i
c.const_deps = []
}
if needs_order {
mut ordered_fields := []ast.ConstField{}
for order in field_order {
ordered_fields << node.fields[order]
}
node.fields = ordered_fields
}
}
ast.DeferStmt {
c.stmts(node.stmts)
}
ast.EnumDecl {
c.enum_decl(node)
}
ast.ExprStmt {
node.typ = c.expr(node.expr)
c.expected_type = table.void_type
c.check_expr_opt_call(node.expr, table.void_type)
// TODO This should work, even if it's prolly useless .-.
// it.typ = c.check_expr_opt_call(it.expr, table.void_type)
}
ast.FnDecl {
c.fn_decl(node)
}
ast.ForCStmt {
c.in_for_count++
c.stmt(node.init)
c.expr(node.cond)
c.stmt(node.inc)
// c.expr(it.inc)
c.stmts(node.stmts)
c.in_for_count--
}
ast.ForInStmt {
c.in_for_count++
typ := c.expr(node.cond)
typ_idx := typ.idx()
if node.is_range {
high_type_idx := c.expr(node.high).idx()
if typ_idx in table.integer_type_idxs && high_type_idx !in table.integer_type_idxs {
c.error('range types do not match', node.cond.position())
} else if typ_idx in table.float_type_idxs || high_type_idx in table.float_type_idxs {
c.error('range type can not be float', node.cond.position())
} else if typ_idx == table.bool_type_idx || high_type_idx == table.bool_type_idx {
c.error('range type can not be bool', node.cond.position())
} else if typ_idx == table.string_type_idx || high_type_idx == table.string_type_idx {
c.error('range type can not be string', node.cond.position())
}
c.expr(node.high)
} else {
mut scope := c.file.scope.innermost(node.pos.pos)
sym := c.table.get_type_symbol(typ)
if sym.kind == .map && !(node.key_var.len > 0 && node.val_var.len > 0) {
c.error('declare a key and a value variable when ranging a map: `for key, val in map {`\n' +
'use `_` if you do not need the variable', node.pos)
}
if node.key_var.len > 0 {
key_type := match sym.kind {
.map { sym.map_info().key_type }
else { table.int_type }
}
it.key_type = key_type
scope.update_var_type(it.key_var, key_type)
}
value_type := c.table.value_type(typ)
if value_type == table.void_type || typ.has_flag(.optional) {
if typ != table.void_type {
c.error('for in: cannot index `${c.table.type_to_str(typ)}`',
it.cond.position())
}
}
it.cond_type = typ
it.kind = sym.kind
it.val_type = value_type
scope.update_var_type(it.val_var, value_type)
}
c.stmts(it.stmts)
c.in_for_count--
}
ast.ForStmt {
c.in_for_count++
typ := c.expr(it.cond)
if !it.is_inf && typ.idx() != table.bool_type_idx {
c.error('non-bool used as for condition', it.pos)
}
// TODO: update loop var type
// how does this work currenly?
c.stmts(it.stmts)
c.in_for_count--
}
ast.GlobalDecl {
c.check_valid_snake_case(it.name, 'global name', it.pos)
}
ast.GoStmt {
if !(it.call_expr is ast.CallExpr) {
c.error('expression in `go` must be a function call', it.call_expr.position())
}
c.expr(it.call_expr)
if it.call_expr is ast.CallExpr {
call_expr := it.call_expr as ast.CallExpr
// Make sure there are no mutable arguments
for arg in call_expr.args {
if arg.is_mut && !arg.typ.is_ptr() {
c.error('function in `go` statement cannot contain mutable non-reference arguments',
arg.expr.position())
}
}
if call_expr.is_method && call_expr.receiver_type.is_ptr() && !call_expr.left_type.is_ptr() {
c.error('method in `go` statement cannot have non-reference mutable receiver',
call_expr.left.position())
}
}
}
// ast.HashStmt {}
ast.Import {}
ast.InterfaceDecl {
c.interface_decl(it)
}
ast.Module {
c.mod = it.name
c.is_builtin_mod = it.name == 'builtin'
c.check_valid_snake_case(it.name, 'module name', it.pos)
}
ast.Return {
c.returns = true
c.return_stmt(mut it)
c.scope_returns = true
}
ast.SqlStmt {
c.sql_stmt(node)
}
ast.StructDecl {
c.struct_decl(it)
}
ast.TypeDecl {
c.type_decl(it)
}
ast.UnsafeStmt {
c.inside_unsafe = true
c.stmts(it.stmts)
c.inside_unsafe = false
}
else {
// println('checker.stmt(): unhandled node')
// println('checker.stmt(): unhandled node (${typeof(node)})')
}
}
}
fn (mut c Checker) stmts(stmts []ast.Stmt) {
mut unreachable := token.Position{
line_nr: -1
}
c.expected_type = table.void_type
for stmt in stmts {
if c.scope_returns {
if unreachable.line_nr == -1 {
unreachable = stmt.position()
}
}
c.stmt(stmt)
}
if unreachable.line_nr >= 0 {
c.error('unreachable code', unreachable)
}
c.scope_returns = false
c.expected_type = table.void_type
}
[inline]
pub fn (c &Checker) unwrap_generic(typ table.Type) table.Type {
if typ.has_flag(.generic) {
// return c.cur_generic_type
return c.cur_generic_type.derive(typ).clear_flag(.generic)
}
return typ
}
// TODO node must be mut
pub fn (mut c Checker) expr(node ast.Expr) table.Type {
c.expr_level++
defer {
c.expr_level--
}
if c.expr_level > 200 {
c.error('checker: too many expr levels: $c.expr_level ', node.position())
return table.void_type
}
match mut node {
ast.AnonFn {
keep_fn := c.cur_fn
c.cur_fn = &node.decl
c.stmts(node.decl.stmts)
c.cur_fn = keep_fn
return if node.is_called {
node.decl.return_type
} else {
node.typ
}
}
ast.ArrayInit {
return c.array_init(mut node)
}
ast.AsCast {
node.expr_type = c.expr(node.expr)
expr_type_sym := c.table.get_type_symbol(node.expr_type)
type_sym := c.table.get_type_symbol(node.typ)
if expr_type_sym.kind == .sum_type {
info := expr_type_sym.info as table.SumType
if type_sym.kind == .placeholder {
// Unknown type used in the right part of `as`
c.error('unknown type `$type_sym.name`', node.pos)
}
if node.typ !in info.variants {
c.error('cannot cast `$expr_type_sym.name` to `$type_sym.name`', node.pos)
// c.error('only $info.variants can be casted to `$typ`', it.pos)
}
} else {
//
c.error('cannot cast non sum type `$type_sym.name` using `as`', node.pos)
}
return node.typ.to_ptr()
// return it.typ
}
ast.Assoc {
scope := c.file.scope.innermost(node.pos.pos)
v := scope.find_var(node.var_name) or {
panic(err)
}
for i, _ in node.fields {
c.expr(node.exprs[i])
}
node.typ = v.typ
return v.typ
}
ast.BoolLiteral {
return table.bool_type
}
ast.CastExpr {
node.expr_type = c.expr(node.expr)
sym := c.table.get_type_symbol(node.expr_type)
if node.typ == table.string_type && !(sym.kind in [.byte, .byteptr] ||
(sym.kind == .array && sym.name == 'array_byte')) {
type_name := c.table.type_to_str(node.expr_type)
c.error('cannot cast type `$type_name` to string, use `x.str()` instead',
node.pos)
}
if node.expr_type == table.string_type {
cast_to_type_sym := c.table.get_type_symbol(node.typ)
if cast_to_type_sym.kind != .alias {
mut error_msg := 'cannot cast a string'
if node.expr is ast.StringLiteral {
str_lit := node.expr as ast.StringLiteral
if str_lit.val.len == 1 {
error_msg += ", for denoting characters use `$str_lit.val` instead of '$str_lit.val'"
}
}
c.error(error_msg, node.pos)
}
}
if node.has_arg {
c.expr(node.arg)
}
node.typname = c.table.get_type_symbol(node.typ).name
return node.typ
}
ast.CallExpr {
return c.call_expr(mut node)
}
ast.CharLiteral {
return table.byte_type
}
ast.ComptimeCall {
node.sym = c.table.get_type_symbol(c.unwrap_generic(c.expr(node.left)))
if node.is_vweb {
// TODO assoc parser bug
pref := *c.pref
pref2 := {
pref |
is_vweb: true
}
mut c2 := new_checker(c.table, pref2)
c2.check(node.vweb_tmpl)
c.warnings << c2.warnings
c.errors << c2.errors
c.nr_warnings += c2.nr_warnings
c.nr_errors += c2.nr_errors
}
return c.table.find_type_idx('vweb.Result')
// return table.void_type
}
ast.ConcatExpr {
return c.concat_expr(mut node)
}
ast.EnumVal {
return c.enum_val(mut node)
}
ast.FloatLiteral {
return table.any_flt_type
}
ast.Ident {
// c.checked_ident = it.name
res := c.ident(mut node)
// c.checked_ident = ''
return res
}
ast.IfExpr {
return c.if_expr(mut node)
}
ast.IfGuardExpr {
node.expr_type = c.expr(node.expr)
return table.bool_type
}
ast.IndexExpr {
return c.index_expr(mut node)
}
ast.InfixExpr {
return c.infix_expr(mut node)
}
ast.IntegerLiteral {
return table.any_int_type
}
ast.MapInit {
return c.map_init(mut node)
}
ast.MatchExpr {
return c.match_expr(mut node)
}
ast.PostfixExpr {
return c.postfix_expr(node)
}
ast.PrefixExpr {
right_type := c.expr(node.right)
// TODO: testing ref/deref strategy
if node.op == .amp && !right_type.is_ptr() {
return right_type.to_ptr()
}
if node.op == .mul && right_type.is_ptr() {
return right_type.deref()
}
if node.op == .bit_not && !right_type.is_int() {
c.error('operator ~ only defined on int types', node.pos)
}
if node.op == .not && right_type != table.bool_type_idx {
c.error('! operator can only be used with bool types', node.pos)
}
return right_type
}
ast.None {
return table.none_type
}
ast.OrExpr {
// never happens
return table.void_type
}
ast.ParExpr {
return c.expr(node.expr)
}
ast.RangeExpr {
// never happens
return table.void_type
}
ast.SelectorExpr {
return c.selector_expr(mut node)
}
ast.SizeOf {
return table.u32_type
}
ast.SqlExpr {
return c.sql_expr(node)
}
ast.StringLiteral {
if node.language == .c {
return table.byteptr_type
}
return table.string_type
}
ast.StringInterLiteral {
return c.string_inter_lit(mut node)
}
ast.StructInit {
return c.struct_init(mut node)
}
ast.Type {
return node.typ
}
ast.TypeOf {
node.expr_type = c.expr(node.expr)
return table.string_type
}
ast.Likely {
ltype := c.expr(node.expr)
if !c.check_types(ltype, table.bool_type) {
ltype_sym := c.table.get_type_symbol(ltype)
lname := if node.is_likely { '_likely_' } else { '_unlikely_' }
c.error('`${lname}()` expects a boolean expression, instead it got `$ltype_sym.name`',
node.pos)
}
return table.bool_type
}
}
return table.void_type
}
pub fn (mut c Checker) ident(mut ident ast.Ident) table.Type {
// TODO: move this
if c.const_deps.len > 0 {
mut name := ident.name
if !name.contains('.') && ident.mod !in ['builtin'] {
name = '${ident.mod}.$ident.name'
}
if name == c.const_decl {
c.error('cycle in constant `$c.const_decl`', ident.pos)
return table.void_type
}
c.const_deps << name
}
if ident.kind == .blank_ident {
return table.void_type
}
// second use
if ident.kind in [.constant, .global, .variable] {
info := ident.info as ast.IdentVar
// if info.typ == table.t_type {
// Got a var with type T, return current generic type
// return c.cur_generic_type
// }
return info.typ
} else if ident.kind == .function {
info := ident.info as ast.IdentFn
return info.typ
} else if ident.kind == .unresolved {
// first use
start_scope := c.file.scope.innermost(ident.pos.pos)
if obj := start_scope.find(ident.name) {
match obj {
ast.GlobalDecl {
ident.kind = .global
ident.info = ast.IdentVar{
typ: obj.typ
}
return obj.typ
}
ast.Var {
// incase var was not marked as used yet (vweb tmpl)
obj.is_used = true
if ident.pos.pos < obj.pos.pos {
c.error('undefined variable `$ident.name` (used before declaration)',
ident.pos)
}
mut typ := obj.typ
if typ == 0 {
if obj.expr is ast.Ident {
inner_ident := obj.expr as ast.Ident
if inner_ident.kind == .unresolved {
c.error('unresolved variable: `$ident.name`', ident.pos)
return table.void_type
}
}
typ = c.expr(obj.expr)
}
is_optional := typ.has_flag(.optional)
ident.kind = .variable
ident.info = ast.IdentVar{
typ: typ
is_optional: is_optional
}
// if typ == table.t_type {
// sym := c.table.get_type_symbol(c.cur_generic_type)
// println('IDENT T unresolved $ident.name typ=$sym.name')
// Got a var with type T, return current generic type
// typ = c.cur_generic_type
// }
// } else {
obj.typ = typ
// unwrap optional (`println(x)`)
if is_optional {
return typ.clear_flag(.optional)
}
return typ
}
else {}
}
}
// prepend mod to look for fn call or const
mut name := ident.name
if !name.contains('.') && ident.mod !in ['builtin'] {
name = '${ident.mod}.$ident.name'
}
if obj := c.file.global_scope.find(name) {
match obj {
ast.ConstField {
mut typ := obj.typ
if typ == 0 {
typ = c.expr(obj.expr)
}
ident.name = name
ident.kind = .constant
ident.info = ast.IdentVar{
typ: typ
}
obj.typ = typ
return typ
}
else {}
}
}
// Non-anon-function object (not a call), e.g. `onclick(my_click)`
if func := c.table.find_fn(name) {
fn_type := table.new_type(c.table.find_or_register_fn_type(ident.mod, func,
false, true))
ident.name = name
ident.kind = .function
ident.info = ast.IdentFn{
typ: fn_type
}
return fn_type
}
}
if ident.language == .c {
return table.int_type
}
if ident.name != '_' {
if c.inside_sql {
if field := c.table.struct_find_field(c.cur_orm_ts, ident.name) {
return field.typ
}
}
if ident.kind == .unresolved && ident.mod != 'builtin' {
// search in the `builtin` idents, for example
// main.compare_f32 may actually be builtin.compare_f32
saved_mod := ident.mod
ident.mod = 'builtin'
builtin_type := c.ident( ident )
if builtin_type != table.void_type {
return builtin_type
}
ident.mod = saved_mod
}
c.error('undefined ident: `$ident.name`', ident.pos)
}
if c.table.known_type(ident.name) {
// e.g. `User` in `json.decode(User, '...')`
return table.void_type
}
return table.void_type
}
pub fn (mut c Checker) concat_expr(mut concat_expr ast.ConcatExpr) table.Type {
mut mr_types := []table.Type{}
for expr in concat_expr.vals {
mr_types << c.expr(expr)
}
if concat_expr.vals.len == 1 {
typ := mr_types[0]
concat_expr.return_type = typ
return typ
} else {
typ := c.table.find_or_register_multi_return(mr_types)
table.new_type(typ)
concat_expr.return_type = typ
return typ
}
}
pub fn (mut c Checker) match_expr(mut node ast.MatchExpr) table.Type {
node.is_expr = c.expected_type != table.void_type
node.expected_type = c.expected_type
cond_type := c.expr(node.cond)
if cond_type == 0 {
c.error('match 0 cond type', node.pos)
}
cond_type_sym := c.table.get_type_symbol(cond_type)
if cond_type_sym.kind !in [.sum_type, .interface_] {
node.is_sum_type = false
}
c.match_exprs(mut node, cond_type_sym)
c.expected_type = cond_type
mut ret_type := table.void_type
for branch in node.branches {
for expr in branch.exprs {
c.expected_type = cond_type
typ := c.expr(expr)
typ_sym := c.table.get_type_symbol(typ)
if node.is_sum_type || node.is_interface {
ok := if cond_type_sym.kind == .sum_type {
// TODO verify sum type
// true // c.check_types(typ, cond_type)
info := cond_type_sym.info as table.SumType
typ in info.variants
} else {
// interface match
c.type_implements(typ, cond_type, node.pos)
}
if !ok {
c.error('cannot use `$typ_sym.name` as `$cond_type_sym.name` in `match`',
node.pos)
}
}
}
c.stmts(branch.stmts)
// If the last statement is an expression, return its type
if branch.stmts.len > 0 {
match branch.stmts[branch.stmts.len - 1] {
ast.ExprStmt {
ret_type = c.expr(it.expr)
it.typ = ret_type
}
else {
// TODO: ask alex about this
// typ := c.expr(it.expr)
// type_sym := c.table.get_type_symbol(typ)
// p.warn('match expr ret $type_sym.name')
// node.typ = typ
// return typ
}
}
}
}
// if ret_type != table.void_type {
// node.is_expr = c.expected_type != table.void_type
// node.expected_type = c.expected_type
// }
node.return_type = ret_type
node.cond_type = cond_type
// println('!m $expr_type')
return ret_type
}
fn (mut c Checker) match_exprs(mut node ast.MatchExpr, type_sym table.TypeSymbol) {
// branch_exprs is a histogram of how many times
// an expr was used in the match
mut branch_exprs := map[string]int{}
for branch in node.branches {
for expr in branch.exprs {
mut key := ''
match expr {
ast.Type { key = c.table.type_to_str(expr.typ) }
ast.EnumVal { key = expr.val }
else { key = expr.str() }
}
val := if key in branch_exprs { branch_exprs[key] } else { 0 }
if val == 1 {
c.error('match case `$key` is handled more than once', branch.pos)
}
branch_exprs[key] = val + 1
}
}
// check that expressions are exhaustive
// this is achieved either by putting an else
// or, when the match is on a sum type or an enum
// by listing all variants or values
mut is_exhaustive := true
mut unhandled := []string{}
match type_sym.info {
table.SumType { for v in it.variants {
v_str := c.table.type_to_str(v)
if v_str !in branch_exprs {
is_exhaustive = false
unhandled << '`$v_str`'
}
} }
//
table.Enum { for v in it.vals {
if v !in branch_exprs {
is_exhaustive = false
unhandled << '`.$v`'
}
} }
else { is_exhaustive = false }
}
mut else_branch := node.branches[node.branches.len - 1]
mut has_else := else_branch.is_else
if !has_else {
for i, branch in node.branches {
if branch.is_else && i != node.branches.len - 1 {
c.error('`else` must be the last branch of `match`', branch.pos)
else_branch = branch
has_else = true
}
}
}
if is_exhaustive {
if has_else {
c.error('match expression is exhaustive, `else` is unnecessary', else_branch.pos)
}
return
}
if has_else {
return
}
mut err_details := 'match must be exhaustive'
if unhandled.len > 0 {
err_details += ' (add match branches for: ' + unhandled.join(', ') + ' or `else {}` at the end)'
} else {
err_details += ' (add `else {}` at the end)'
}
c.error(err_details, node.pos)
}
pub fn (mut c Checker) if_expr(mut node ast.IfExpr) table.Type {
mut expr_required := false
if c.expected_type != table.void_type {
// sym := c.table.get_type_symbol(c.expected_type)
// println('$c.file.path $node.pos.line_nr IF is expr: checker exp type = ' + sym.name)
expr_required = true
}
former_expected_type := c.expected_type
node.typ = table.void_type
for i, branch in node.branches {
if branch.cond is ast.ParExpr {
c.error('unnecessary `()` in an if condition. use `if expr {` instead of `if (expr) {`.',
branch.pos)
}
if !node.has_else || i < node.branches.len - 1 {
// check condition type is boolean
cond_typ := c.expr(branch.cond)
if cond_typ.idx() !in [table.bool_type_idx, table.void_type_idx] {
// void types are skipped, because they mean the var was initialized incorrectly
// (via missing function etc)
typ_sym := c.table.get_type_symbol(cond_typ)
c.error('non-bool type `$typ_sym.name` used as if condition', branch.pos)
}
}
c.stmts(branch.stmts)
if expr_required {
if branch.stmts.len > 0 && branch.stmts[branch.stmts.len - 1] is ast.ExprStmt {
last_expr := branch.stmts[branch.stmts.len - 1] as ast.ExprStmt
c.expected_type = former_expected_type
last_expr.typ = c.expr(last_expr.expr)
if last_expr.typ != node.typ {
if node.typ == table.void_type {
// first branch of if expression
node.is_expr = true
node.typ = last_expr.typ
continue
} else if node.typ in [table.any_flt_type, table.any_int_type] {
if node.typ == table.any_int_type {
if last_expr.typ.is_int() || last_expr.typ.is_float() {
node.typ = last_expr.typ
continue
}
} else { // node.typ == any_float
if last_expr.typ.is_float() {
node.typ = last_expr.typ
continue
}
}
}
if last_expr.typ in [table.any_flt_type, table.any_int_type] {
if last_expr.typ == table.any_int_type {
if node.typ.is_int() || node.typ.is_float() {
continue
}
} else { // expr_type == any_float
if node.typ.is_float() {
continue
}
}
}
c.error('mismatched types `${c.table.type_to_str(node.typ)}` and `${c.table.type_to_str(last_expr.typ)}`',
node.pos)
}
} else {
c.error('`if` expression requires an expression as the last statement of every branch',
branch.pos)
}
}
}
// if only untyped literals were given default to int/f64
if node.typ == table.any_int_type {
node.typ = table.int_type
} else if node.typ == table.any_flt_type {
node.typ = table.f64_type
}
if expr_required {
if !node.has_else {
c.error('`if` expression needs `else` clause', node.pos)
}
return node.typ
}
return table.bool_type
}
pub fn (mut c Checker) postfix_expr(node ast.PostfixExpr) table.Type {
typ := c.expr(node.expr)
typ_sym := c.table.get_type_symbol(typ)
// if !typ.is_number() {
if !typ_sym.is_number() {
println(typ_sym.kind.str())
c.error('invalid operation: $node.op.str() (non-numeric type `$typ_sym.name`)',
node.pos)
} else {
c.fail_if_immutable(node.expr)
}
return typ
}
pub fn (mut c Checker) index_expr(mut node ast.IndexExpr) table.Type {
typ := c.expr(node.left)
node.left_type = typ
mut is_range := false // TODO is_range := node.index is ast.RangeExpr
match node.index {
ast.RangeExpr {
is_range = true
if it.has_low {
c.expr(it.low)
}
if it.has_high {
c.expr(it.high)
}
}
else {}
}
typ_sym := c.table.get_type_symbol(typ)
if typ_sym.kind !in [.array, .array_fixed, .string, .map] && !typ.is_ptr() && !(!typ_sym.name[0].is_capital() &&
typ_sym.name.ends_with('ptr')) && !typ.has_flag(.variadic) { // byteptr, charptr etc
c.error('type `$typ_sym.name` does not support indexing', node.pos)
}
if !is_range {
index_type := c.expr(node.index)
index_type_sym := c.table.get_type_symbol(index_type)
// println('index expr left=$typ_sym.name $node.pos.line_nr')
// if typ_sym.kind == .array && (!(table.type_idx(index_type) in table.number_type_idxs) &&
// index_type_sym.kind != .enum_) {
if typ_sym.kind in [.array, .array_fixed] && !(index_type.is_number() || index_type_sym.kind ==
.enum_) {
c.error('non-integer index `$index_type_sym.name` (array type `$typ_sym.name`)',
node.pos)
} else if typ_sym.kind == .map && index_type.idx() != table.string_type_idx {
c.error('non-string map index (map type `$typ_sym.name`)', node.pos)
}
value_type := c.table.value_type(typ)
if value_type != table.void_type {
return value_type
}
} else if is_range {
// array[1..2] => array
// fixed_array[1..2] => array
if typ_sym.kind == .array_fixed {
elem_type := c.table.value_type(typ)
idx := c.table.find_or_register_array(elem_type, 1, c.mod)
return table.new_type(idx)
}
}
return typ
}
// `.green` or `Color.green`
// If a short form is used, `expected_type` needs to be an enum
// with this value.
pub fn (mut c Checker) enum_val(mut node ast.EnumVal) table.Type {
typ_idx := if node.enum_name == '' {
c.expected_type.idx()
} else { //
c.table.find_type_idx(node.enum_name)
}
// println('checker: enum_val: $node.enum_name typeidx=$typ_idx')
if typ_idx == 0 {
c.error('not an enum (name=$node.enum_name) (type_idx=0)', node.pos)
return table.void_type
}
mut typ := table.new_type(typ_idx)
if typ == table.void_type {
c.error('not an enum', node.pos)
return table.void_type
}
mut typ_sym := c.table.get_type_symbol(typ)
// println('tname=$typ_sym.name $node.pos.line_nr $c.file.path')
if typ_sym.kind == .array && node.enum_name.len == 0 {
array_info := typ_sym.info as table.Array
typ = array_info.elem_type
typ_sym = c.table.get_type_symbol(typ)
}
if typ_sym.kind != .enum_ {
c.error('expected type is not an enum', node.pos)
return table.void_type
}
if !(typ_sym.info is table.Enum) {
c.error('not an enum', node.pos)
return table.void_type
}
// info := typ_sym.info as table.Enum
info := typ_sym.enum_info()
// rintln('checker: x = $info.x enum val $c.expected_type $typ_sym.name')
// println(info.vals)
if node.val !in info.vals {
c.error('enum `$typ_sym.name` does not have a value `$node.val`', node.pos)
}
node.typ = typ
return typ
}
pub fn (mut c Checker) map_init(mut node ast.MapInit) table.Type {
// `x ;= map[string]string` - set in parser
if node.typ != 0 {
info := c.table.get_type_symbol(node.typ).map_info()
node.key_type = info.key_type
node.value_type = info.value_type
return node.typ
}
// `{'age': 20}`
key0_type := c.table.mktyp(c.expr(node.keys[0]))
val0_type := c.table.mktyp(c.expr(node.vals[0]))
for i, key in node.keys {
key_i := key as ast.StringLiteral
for j in 0 .. i {
key_j := node.keys[j] as ast.StringLiteral
if key_i.val == key_j.val {
c.error('duplicate key "$key_i.val" in map literal', key.position())
}
}
if i == 0 {
continue
}
val := node.vals[i]
key_type := c.expr(key)
val_type := c.expr(val)
if !c.check_types(key_type, key0_type) {
key0_type_sym := c.table.get_type_symbol(key0_type)
key_type_sym := c.table.get_type_symbol(key_type)
c.error('map init: cannot use `$key_type_sym.name` as `$key0_type_sym.name` for map key',
node.pos)
}
if !c.check_types(val_type, val0_type) {
val0_type_sym := c.table.get_type_symbol(val0_type)
val_type_sym := c.table.get_type_symbol(val_type)
c.error('map init: cannot use `$val_type_sym.name` as `$val0_type_sym.name` for map value',
node.pos)
}
}
map_type := table.new_type(c.table.find_or_register_map(key0_type, val0_type))
node.typ = map_type
node.key_type = key0_type
node.value_type = val0_type
return map_type
}
pub fn (mut c Checker) warn(s string, pos token.Position) {
allow_warnings := !c.pref.is_prod // allow warnings only in dev builds
c.warn_or_error(s, pos, allow_warnings) // allow warnings only in dev builds
}
pub fn (mut c Checker) error(message string, pos token.Position) {
if c.pref.is_verbose {
print_backtrace()
}
c.warn_or_error(message, pos, false)
}
fn (mut c Checker) warn_or_error(message string, pos token.Position, warn bool) {
// add backtrace to issue struct, how?
// if c.pref.is_verbose {
// print_backtrace()
// }
if warn && !c.pref.skip_warnings {
c.nr_warnings++
wrn := errors.Warning{
reporter: errors.Reporter.checker
pos: pos
file_path: c.file.path
message: message
}
c.file.warnings << wrn
c.warnings << wrn
return
}
if !warn {
c.nr_errors++
if pos.line_nr !in c.error_lines {
err := errors.Error{
reporter: errors.Reporter.checker
pos: pos
file_path: c.file.path
message: message
}
c.file.errors << err
c.errors << err
c.error_lines << pos.line_nr
}
}
}
// for debugging only
fn (c &Checker) fileis(s string) bool {
return c.file.path.contains(s)
}
fn (mut c Checker) sql_expr(mut node ast.SqlExpr) table.Type {
c.inside_sql = true
defer {
c.inside_sql = false
}
sym := c.table.get_type_symbol(node.table_type)
if sym.kind == .placeholder {
c.error('orm: unknown type `$sym.name`', node.pos)
return table.void_type
}
c.cur_orm_ts = sym
info := sym.info as table.Struct
fields := c.fetch_and_verify_orm_fields(info, node.pos, node.table_name)
node.fields = fields
node.table_name = sym.name
if node.has_where {
c.expr(node.where_expr)
}
if node.has_offset {
c.expr(node.offset_expr)
}
if node.has_limit {
c.expr(node.limit_expr)
}
c.expr(node.db_expr)
return node.typ
}
fn (mut c Checker) sql_stmt(mut node ast.SqlStmt) table.Type {
c.inside_sql = true
defer {
c.inside_sql = false
}
if node.table_type == 0 {
c.error('orm: unknown type `$node.table_name`', node.pos)
}
sym := c.table.get_type_symbol(node.table_type)
if sym.kind == .placeholder {
c.error('orm: unknown type `$sym.name`', node.pos)
return table.void_type
}
c.cur_orm_ts = sym
info := sym.info as table.Struct
fields := c.fetch_and_verify_orm_fields(info, node.pos, node.table_name)
node.fields = fields
c.expr(node.db_expr)
if node.kind == .update {
for expr in node.update_exprs {
c.expr(expr)
}
}
c.expr(node.where_expr)
return table.void_type
}
fn (c &Checker) fetch_and_verify_orm_fields(info table.Struct, pos token.Position, table_name string) []table.Field {
fields := info.fields.filter(it.typ in [table.string_type, table.int_type, table.bool_type] &&
'skip' !in it.attrs)
if fields.len == 0 {
c.error('V orm: select: empty fields in `$table_name`', pos)
}
if fields[0].name != 'id' {
c.error('V orm: `id int` must be the first field in `$table_name`', pos)
}
return fields
}
fn (mut c Checker) fn_decl(it ast.FnDecl) {
if it.is_generic && c.cur_generic_type == 0 { // need the cur_generic_type check to avoid inf. recursion
// loop thru each generic type and generate a function
for gen_type in c.table.fn_gen_types[it.name] {
c.cur_generic_type = gen_type
// sym:=c.table.get_type_symbol(gen_type)
// println('\ncalling check for $it.name for type $sym.name')
c.fn_decl(it)
}
c.cur_generic_type = 0
return
}
if it.language == .v && !c.is_builtin_mod {
c.check_valid_snake_case(it.name, 'function name', it.pos)
}
if it.is_method {
sym := c.table.get_type_symbol(it.receiver.typ)
if sym.kind == .interface_ {
c.error('interfaces cannot be used as method receiver', it.receiver_pos)
}
// if sym.has_method(it.name) {
// c.warn('duplicate method `$it.name`', it.pos)
// }
// Do not allow to modify types from other modules
if sym.mod != c.mod && !c.is_builtin_mod && sym.mod != '' { // TODO remove != ''
// remove the method to hide other related errors (`method is private` etc)
mut idx := 0
for i, m in sym.methods {
if m.name == it.name {
println('got it')
idx = i
break
}
}
sym.methods.delete(idx)
//
c.error('cannot define new methods on non-local `$sym.name` (' +
'current module is `$c.mod`, `$sym.name` is from `$sym.mod`)', it.pos)
}
}
if it.language == .v {
// Make sure all types are valid
for arg in it.args {
sym := c.table.get_type_symbol(arg.typ)
if sym.kind == .placeholder {
c.error('unknown type `$sym.name`', it.pos)
}
}
}
c.expected_type = table.void_type
c.cur_fn = &it
c.stmts(it.stmts)
if it.language == .v && !it.no_body &&
it.return_type != table.void_type && !c.returns &&
it.name !in ['panic', 'exit'] {
c.error('missing return at end of function `$it.name`', it.pos)
}
c.returns = false
}