v/vlib/rand/rand.c.v

191 lines
4.6 KiB
V

module rand
import time
const clock_seq_hi_and_reserved_valid_values = [`8`, `9`, `a`, `b`]
// uuid_v4 generates a random (v4) UUID
// See https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_(random)
pub fn uuid_v4() string {
buflen := 36
mut buf := unsafe { malloc_noscan(37) }
mut i_buf := 0
mut x := u64(0)
mut d := byte(0)
for i_buf < buflen {
mut c := 0
x = default_rng.u64()
// do most of the bit manipulation at once:
x &= 0x0F0F0F0F0F0F0F0F
x += 0x3030303030303030
// write the ASCII codes to the buffer:
for c < 8 && i_buf < buflen {
d = byte(x)
unsafe {
buf[i_buf] = if d > 0x39 { d + 0x27 } else { d }
}
i_buf++
c++
x = x >> 8
}
}
// there are still some random bits in x:
x = x >> 8
d = byte(x)
unsafe {
// From https://www.ietf.org/rfc/rfc4122.txt :
// >> Set the two most significant bits (bits 6 and 7) of the clock_seq_hi_and_reserved
// >> to zero and one, respectively.
// all nibbles starting with 10 are: 1000, 1001, 1010, 1011 -> hex digits `8`, `9`, `a`, `b`
// these are stored in clock_seq_hi_and_reserved_valid_values, choose one of them at random:
buf[19] = rand.clock_seq_hi_and_reserved_valid_values[d & 0x03]
// >> Set the four most significant bits (bits 12 through 15) of the
// >> time_hi_and_version field to the 4-bit version number from Section 4.1.3.
buf[14] = `4`
buf[8] = `-`
buf[13] = `-`
buf[18] = `-`
buf[23] = `-`
buf[buflen] = 0 // ensure the string will be 0 terminated, just in case
// for i in 0..37 { println('i: ${i:2} | ${buf[i].ascii_str()} | ${buf[i].hex()} | ${buf[i]:08b}') }
return buf.vstring_with_len(buflen)
}
}
const ulid_encoding = '0123456789ABCDEFGHJKMNPQRSTVWXYZ'
// ulid generates an Unique Lexicographically sortable IDentifier.
// See https://github.com/ulid/spec .
// NB: ULIDs can leak timing information, if you make them public, because
// you can infer the rate at which some resource is being created, like
// users or business transactions.
// (https://news.ycombinator.com/item?id=14526173)
pub fn ulid() string {
return ulid_at_millisecond(u64(time.utc().unix_time_milli()))
}
// ulid_at_millisecond does the same as `ulid` but takes a custom Unix millisecond timestamp via `unix_time_milli`.
pub fn ulid_at_millisecond(unix_time_milli u64) string {
buflen := 26
mut buf := unsafe { malloc_noscan(27) }
mut t := unix_time_milli
mut i := 9
for i >= 0 {
unsafe {
buf[i] = rand.ulid_encoding[t & 0x1F]
}
t = t >> 5
i--
}
// first rand set
mut x := default_rng.u64()
i = 10
for i < 19 {
unsafe {
buf[i] = rand.ulid_encoding[x & 0x1F]
}
x = x >> 5
i++
}
// second rand set
x = default_rng.u64()
for i < 26 {
unsafe {
buf[i] = rand.ulid_encoding[x & 0x1F]
}
x = x >> 5
i++
}
unsafe {
buf[26] = 0
return buf.vstring_with_len(buflen)
}
}
// string_from_set returns a string of length `len` containing random characters sampled from the given `charset`
pub fn string_from_set(charset string, len int) string {
if len == 0 {
return ''
}
mut buf := unsafe { malloc_noscan(len + 1) }
for i in 0 .. len {
unsafe {
buf[i] = charset[intn(charset.len) or { 0 }]
}
}
unsafe {
buf[len] = 0
}
return unsafe { buf.vstring_with_len(len) }
}
// string returns a string of length `len` containing random characters in range `[a-zA-Z]`.
pub fn string(len int) string {
return string_from_set(english_letters, len)
}
// hex returns a hexadecimal number of length `len` containing random characters in range `[a-f0-9]`.
pub fn hex(len int) string {
return string_from_set(hex_chars, len)
}
// ascii returns a random string of the printable ASCII characters with length `len`.
pub fn ascii(len int) string {
return string_from_set(ascii_chars, len)
}
fn deinit() {
unsafe {
default_rng.free() // free the implementation
free(default_rng) // free the interface wrapper itself
}
}
// init initializes the default RNG.
fn init() {
default_rng = new_default()
C.atexit(deinit)
}
fn read_32(mut rng PRNG, mut buf []byte) {
p32 := unsafe { &u32(buf.data) }
u32s := buf.len / 4
for i in 0 .. u32s {
unsafe {
*(p32 + i) = rng.u32()
}
}
for i in u32s * 4 .. buf.len {
buf[i] = rng.byte()
}
}
fn read_64(mut rng PRNG, mut buf []byte) {
p64 := unsafe { &u64(buf.data) }
u64s := buf.len / 8
for i in 0 .. u64s {
unsafe {
*(p64 + i) = rng.u64()
}
}
for i in u64s * 8 .. buf.len {
buf[i] = rng.byte()
}
}
fn read_internal(mut rng PRNG, mut buf []byte) {
match rng.block_size() {
32 {
read_32(mut rng, mut buf)
}
64 {
read_64(mut rng, mut buf)
}
else {
for i in 0 .. buf.len {
buf[i] = rng.byte()
}
}
}
}