v/vlib/v/gen/c/cgen.v

5991 lines
180 KiB
V

// Copyright (c) 2019-2022 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module c
import os
import strings
import hash.fnv1a
import v.ast
import v.pref
import v.token
import v.util
import v.util.version
import v.depgraph
import sync.pool
const (
// Note: some of the words in c_reserved, are not reserved in C, but are
// in C++, or have special meaning in V, thus need escaping too. `small`
// should not be needed, but see:
// https://stackoverflow.com/questions/5874215/what-is-rpcndr-h
c_reserved = ['array', 'auto', 'bool', 'break', 'calloc', 'case', 'char', 'class', 'complex',
'const', 'continue', 'default', 'delete', 'do', 'double', 'else', 'enum', 'error', 'exit',
'export', 'extern', 'false', 'float', 'for', 'free', 'goto', 'if', 'inline', 'int', 'link',
'long', 'malloc', 'namespace', 'new', 'nil', 'panic', 'register', 'restrict', 'return',
'short', 'signed', 'sizeof', 'static', 'string', 'struct', 'switch', 'typedef', 'typename',
'union', 'unix', 'unsigned', 'void', 'volatile', 'while', 'template', 'true', 'small',
'stdout', 'stdin', 'stderr']
c_reserved_map = string_array_to_map(c_reserved)
// same order as in token.Kind
cmp_str = ['eq', 'ne', 'gt', 'lt', 'ge', 'le']
// when operands are switched
cmp_rev = ['eq', 'ne', 'lt', 'gt', 'le', 'ge']
result_name = '_result'
option_name = '_option'
)
fn string_array_to_map(a []string) map[string]bool {
mut res := map[string]bool{}
for x in a {
res[x] = true
}
return res
}
struct Gen {
pref &pref.Preferences
field_data_type ast.Type // cache her to avoid map lookups
module_built string
timers_should_print bool
table &ast.Table
mut:
out strings.Builder
cheaders strings.Builder
includes strings.Builder // all C #includes required by V modules
typedefs strings.Builder
enum_typedefs strings.Builder // enum types
definitions strings.Builder // typedefs, defines etc (everything that goes to the top of the file)
type_definitions strings.Builder // typedefs, defines etc (everything that goes to the top of the file)
alias_definitions strings.Builder // alias fixed array of non-builtin
hotcode_definitions strings.Builder // -live declarations & functions
channel_definitions strings.Builder // channel related code
comptime_definitions strings.Builder // custom defines, given by -d/-define flags on the CLI
global_inits map[string]strings.Builder // default initializers for globals (goes in _vinit())
global_init strings.Builder // thread local of the above
inits map[string]strings.Builder // contents of `void _vinit/2{}`
init strings.Builder
cleanup strings.Builder
cleanups map[string]strings.Builder // contents of `void _vcleanup(){}`
gowrappers strings.Builder // all go callsite wrappers
stringliterals strings.Builder // all string literals (they depend on tos3() beeing defined
auto_str_funcs strings.Builder // function bodies of all auto generated _str funcs
dump_funcs strings.Builder // function bodies of all auto generated _str funcs
pcs_declarations strings.Builder // -prof profile counter declarations for each function
embedded_data strings.Builder // data to embed in the executable/binary
shared_types strings.Builder // shared/lock types
shared_functions strings.Builder // shared constructors
options strings.Builder // `option_xxxx` types
out_results strings.Builder // `result_xxxx` types
json_forward_decls strings.Builder // json type forward decls
sql_buf strings.Builder // for writing exprs to args via `sqlite3_bind_int()` etc
file &ast.File
unique_file_path_hash u64 // a hash of file.path, used for making auxilary fn generation unique (like `compare_xyz`)
fn_decl &ast.FnDecl // pointer to the FnDecl we are currently inside otherwise 0
last_fn_c_name string
tmp_count int // counter for unique tmp vars (_tmp1, _tmp2 etc); resets at the start of each fn.
tmp_count_af int // a separate tmp var counter for autofree fn calls
tmp_count_declarations int // counter for unique tmp names (_d1, _d2 etc); does NOT reset, used for C declarations
global_tmp_count int // like tmp_count but global and not resetted in each function
discard_or_result bool // do not safe last ExprStmt of `or` block in tmp variable to defer ongoing expr usage
is_assign_lhs bool // inside left part of assign expr (for array_set(), etc)
is_void_expr_stmt bool // ExprStmt whos result is discarded
is_arraymap_set bool // map or array set value state
is_amp bool // for `&Foo{}` to merge PrefixExpr `&` and StructInit `Foo{}`; also for `&u8(0)` etc
is_sql bool // Inside `sql db{}` statement, generating sql instead of C (e.g. `and` instead of `&&` etc)
is_shared bool // for initialization of hidden mutex in `[rw]shared` literals
is_vlines_enabled bool // is it safe to generate #line directives when -g is passed
is_autofree bool // false, inside the bodies of fns marked with [manualfree], otherwise === g.pref.autofree
is_builtin_mod bool
is_json_fn bool // inside json.encode()
is_js_call bool // for handling a special type arg #1 `json.decode(User, ...)`
is_fn_index_call bool
is_cc_msvc bool // g.pref.ccompiler == 'msvc'
vlines_path string // set to the proper path for generating #line directives
optionals map[string]string // to avoid duplicates
results map[string]string // to avoid duplicates
done_optionals shared []string // to avoid duplicates
chan_pop_optionals map[string]string // types for `x := <-ch or {...}`
chan_push_optionals map[string]string // types for `ch <- x or {...}`
mtxs string // array of mutexes if the `lock` has multiple variables
labeled_loops map[string]&ast.Stmt
inner_loop &ast.Stmt
shareds map[int]string // types with hidden mutex for which decl has been emitted
inside_ternary int // ?: comma separated statements on a single line
inside_map_postfix bool // inside map++/-- postfix expr
inside_map_infix bool // inside map<</+=/-= infix expr
inside_map_index bool
inside_opt_data bool
inside_if_optional bool
inside_match_optional bool
inside_vweb_tmpl bool
inside_return bool
inside_struct_init bool
inside_or_block bool
inside_call bool
inside_for_c_stmt bool
inside_comptime_for_field bool
inside_cast_in_heap int // inside cast to interface type in heap (resolve recursive calls)
inside_const bool
inside_const_optional bool
inside_lambda bool
loop_depth int
ternary_names map[string]string
ternary_level_names map[string][]string
arraymap_set_pos int // map or array set value position
stmt_path_pos []int // positions of each statement start, for inserting C statements before the current statement
skip_stmt_pos bool // for handling if expressions + autofree (since both prepend C statements)
right_is_opt bool
indent int
empty_line bool
assign_op token.Kind // *=, =, etc (for array_set)
defer_stmts []ast.DeferStmt
defer_ifdef string
defer_profile_code string
defer_vars []string
str_types []StrType // types that need automatic str() generation
generated_str_fns []StrType // types that already have a str() function
threaded_fns shared []string // for generating unique wrapper types and fns for `go xxx()`
waiter_fns shared []string // functions that wait for `go xxx()` to finish
needed_equality_fns []ast.Type
generated_eq_fns []ast.Type
array_sort_fn shared []string
array_contains_types []ast.Type
array_index_types []ast.Type
auto_fn_definitions []string // auto generated functions defination list
sumtype_casting_fns []SumtypeCastingFn
anon_fn_definitions []string // anon generated functions defination list
sumtype_definitions map[int]bool // `_TypeA_to_sumtype_TypeB()` fns that have been generated
json_types []ast.Type // to avoid json gen duplicates
pcs []ProfileCounterMeta // -prof profile counter fn_names => fn counter name
hotcode_fn_names []string
embedded_files []ast.EmbeddedFile
sql_i int
sql_stmt_name string
sql_bind_name string
sql_idents []string
sql_idents_types []ast.Type
sql_left_type ast.Type
sql_table_name string
sql_fkey string
sql_parent_id string
sql_side SqlExprSide // left or right, to distinguish idents in `name == name`
strs_to_free0 []string // strings.Builder
// strs_to_free []string // strings.Builder
// tmp_arg_vars_to_free []string
// autofree_pregen map[string]string
// autofree_pregen_buf strings.Builder
// autofree_tmp_vars []string // to avoid redefining the same tmp vars in a single function
// nr_vars_to_free int
// doing_autofree_tmp bool
comptime_for_method string // $for method in T.methods {}
comptime_for_field_var string // $for field in T.fields {}; the variable name
comptime_for_field_value ast.StructField // value of the field variable
comptime_for_field_type ast.Type // type of the field variable inferred from `$if field.typ is T {}`
comptime_var_type_map map[string]ast.Type
prevent_sum_type_unwrapping_once bool // needed for assign new values to sum type
// used in match multi branch
// TypeOne, TypeTwo {}
// where an aggregate (at least two types) is generated
// sum type deref needs to know which index to deref because unions take care of the correct field
aggregate_type_idx int
branch_parent_pos int // used in BranchStmt (continue/break) for autofree stop position
returned_var_name string // to detect that a var doesn't need to be freed since it's being returned
infix_left_var_name string // a && if expr
called_fn_name string
timers &util.Timers = util.get_timers()
force_main_console bool // true when [console] used on fn main()
as_cast_type_names map[string]string // table for type name lookup in runtime (for __as_cast)
obf_table map[string]string
referenced_fns shared map[string]bool // functions that have been referenced
nr_closures int
expected_cast_type ast.Type // for match expr of sumtypes
or_expr_return_type ast.Type // or { 0, 1 } return type
anon_fn bool
tests_inited bool
has_main bool
// main_fn_decl_node ast.FnDecl
cur_mod ast.Module
cur_concrete_types []ast.Type // do not use table.cur_concrete_types because table is global, so should not be accessed by different threads
cur_fn &ast.FnDecl = 0 // same here
cur_lock ast.LockExpr
autofree_methods map[int]bool
generated_free_methods map[int]bool
autofree_scope_stmts []string
}
pub fn gen(files []&ast.File, table &ast.Table, pref &pref.Preferences) string {
// println('start cgen2')
mut module_built := ''
if pref.build_mode == .build_module {
for file in files {
if file.path.contains(pref.path)
&& file.mod.short_name == pref.path.all_after_last(os.path_separator).trim_right(os.path_separator) {
module_built = file.mod.name
break
}
}
}
mut timers_should_print := false
$if time_cgening ? {
timers_should_print = true
}
mut global_g := Gen{
file: 0
out: strings.new_builder(512000)
cheaders: strings.new_builder(15000)
includes: strings.new_builder(100)
typedefs: strings.new_builder(100)
enum_typedefs: strings.new_builder(100)
type_definitions: strings.new_builder(100)
alias_definitions: strings.new_builder(100)
hotcode_definitions: strings.new_builder(100)
channel_definitions: strings.new_builder(100)
comptime_definitions: strings.new_builder(100)
definitions: strings.new_builder(100)
gowrappers: strings.new_builder(100)
stringliterals: strings.new_builder(100)
auto_str_funcs: strings.new_builder(100)
dump_funcs: strings.new_builder(100)
pcs_declarations: strings.new_builder(100)
embedded_data: strings.new_builder(1000)
options: strings.new_builder(100)
out_results: strings.new_builder(100)
shared_types: strings.new_builder(100)
shared_functions: strings.new_builder(100)
json_forward_decls: strings.new_builder(100)
sql_buf: strings.new_builder(100)
table: table
pref: pref
fn_decl: 0
is_autofree: pref.autofree
indent: -1
module_built: module_built
timers_should_print: timers_should_print
timers: util.new_timers(should_print: timers_should_print, label: 'global_cgen')
inner_loop: &ast.EmptyStmt{}
field_data_type: ast.Type(table.find_type_idx('FieldData'))
init: strings.new_builder(100)
is_cc_msvc: pref.ccompiler == 'msvc'
}
// anon fn may include assert and thus this needs
// to be included before any test contents are written
if pref.is_test {
global_g.write_tests_definitions()
}
global_g.timers.start('cgen init')
for mod in global_g.table.modules {
global_g.inits[mod] = strings.new_builder(200)
global_g.global_inits[mod] = strings.new_builder(100)
global_g.cleanups[mod] = strings.new_builder(100)
}
global_g.init()
global_g.timers.show('cgen init')
global_g.tests_inited = false
global_g.file = files.last()
if !pref.no_parallel {
mut pp := pool.new_pool_processor(callback: cgen_process_one_file_cb)
pp.set_shared_context(global_g) // TODO: make global_g shared
pp.work_on_items(files)
global_g.timers.start('cgen unification')
// tg = thread gen
for g in pp.get_results_ref<Gen>() {
global_g.embedded_files << g.embedded_files
global_g.out.write(g.out) or { panic(err) }
global_g.cheaders.write(g.cheaders) or { panic(err) }
global_g.includes.write(g.includes) or { panic(err) }
global_g.typedefs.write(g.typedefs) or { panic(err) }
global_g.type_definitions.write(g.type_definitions) or { panic(err) }
global_g.alias_definitions.write(g.alias_definitions) or { panic(err) }
global_g.definitions.write(g.definitions) or { panic(err) }
global_g.gowrappers.write(g.gowrappers) or { panic(err) }
global_g.stringliterals.write(g.stringliterals) or { panic(err) }
global_g.auto_str_funcs.write(g.auto_str_funcs) or { panic(err) }
global_g.dump_funcs.write(g.auto_str_funcs) or { panic(err) }
global_g.comptime_definitions.write(g.comptime_definitions) or { panic(err) }
global_g.pcs_declarations.write(g.pcs_declarations) or { panic(err) }
global_g.hotcode_definitions.write(g.hotcode_definitions) or { panic(err) }
global_g.embedded_data.write(g.embedded_data) or { panic(err) }
global_g.shared_types.write(g.shared_types) or { panic(err) }
global_g.shared_functions.write(g.channel_definitions) or { panic(err) }
global_g.force_main_console = global_g.force_main_console || g.force_main_console
// merge maps
for k, v in g.shareds {
global_g.shareds[k] = v
}
for k, v in g.chan_pop_optionals {
global_g.chan_pop_optionals[k] = v
}
for k, v in g.chan_push_optionals {
global_g.chan_push_optionals[k] = v
}
for k, v in g.optionals {
global_g.optionals[k] = v
}
for k, v in g.results {
global_g.results[k] = v
}
for k, v in g.as_cast_type_names {
global_g.as_cast_type_names[k] = v
}
for k, v in g.sumtype_definitions {
global_g.sumtype_definitions[k] = v
}
global_g.json_forward_decls.write(g.json_forward_decls) or { panic(err) }
global_g.enum_typedefs.write(g.enum_typedefs) or { panic(err) }
global_g.channel_definitions.write(g.channel_definitions) or { panic(err) }
global_g.sql_buf.write(g.sql_buf) or { panic(err) }
global_g.cleanups[g.file.mod.name].write(g.cleanup) or { panic(err) } // strings.Builder.write never fails; it is like that in the source
global_g.inits[g.file.mod.name].write(g.init) or { panic(err) }
global_g.global_inits[g.file.mod.name].write(g.global_init) or { panic(err) }
for str_type in g.str_types {
global_g.str_types << str_type
}
for scf in g.sumtype_casting_fns {
if scf !in global_g.sumtype_casting_fns {
global_g.sumtype_casting_fns << scf
}
}
global_g.nr_closures += g.nr_closures
global_g.has_main = global_g.has_main || g.has_main
global_g.auto_fn_definitions << g.auto_fn_definitions
global_g.anon_fn_definitions << g.anon_fn_definitions
global_g.needed_equality_fns << g.needed_equality_fns // duplicates are resolved later in gen_equality_fns
global_g.array_contains_types << g.array_contains_types
global_g.array_index_types << g.array_index_types
global_g.pcs << g.pcs
global_g.json_types << g.json_types
global_g.hotcode_fn_names << g.hotcode_fn_names
unsafe { g.free_builders() }
for k, v in g.autofree_methods {
global_g.autofree_methods[k] = v
}
}
} else {
for file in files {
global_g.file = file
global_g.gen_file()
global_g.inits[file.mod.name].drain_builder(mut global_g.init, 100)
global_g.cleanups[file.mod.name].drain_builder(mut global_g.cleanup, 100)
global_g.global_inits[file.mod.name].drain_builder(mut global_g.global_init,
100)
}
global_g.timers.start('cgen unification')
}
global_g.gen_jsons()
global_g.write_optionals()
global_g.write_results()
global_g.dump_expr_definitions() // this uses global_g.get_str_fn, so it has to go before the below for loop
for i := 0; i < global_g.str_types.len; i++ {
global_g.final_gen_str(global_g.str_types[i])
}
for sumtype_casting_fn in global_g.sumtype_casting_fns {
global_g.write_sumtype_casting_fn(sumtype_casting_fn)
}
global_g.write_shareds()
global_g.write_chan_pop_optional_fns()
global_g.write_chan_push_optional_fns()
global_g.gen_array_contains_methods()
global_g.gen_array_index_methods()
global_g.gen_equality_fns()
global_g.gen_free_methods()
global_g.timers.show('cgen unification')
mut g := global_g
g.timers.start('cgen common')
// to make sure type idx's are the same in cached mods
if g.pref.build_mode == .build_module {
for idx, sym in g.table.type_symbols {
if idx == 0 {
continue
}
g.definitions.writeln('int _v_type_idx_${sym.cname}();')
}
} else if g.pref.use_cache {
for idx, sym in g.table.type_symbols {
if idx == 0 {
continue
}
g.definitions.writeln('int _v_type_idx_${sym.cname}() { return $idx; };')
}
}
//
// v files are finished, what remains is pure C code
g.gen_vlines_reset()
if g.pref.build_mode != .build_module {
// no init in builtin.o
g.write_init_function()
}
g.finish()
mut b := strings.new_builder(640000)
b.write_string(g.hashes())
b.writeln('\n// V comptime_definitions:')
b.write_string(g.comptime_definitions.str())
b.writeln('\n// V typedefs:')
b.write_string(g.typedefs.str())
b.writeln('\n// V cheaders:')
b.write_string(g.cheaders.str())
if g.pcs_declarations.len > 0 {
b.writeln('\n// V profile counters:')
b.write_string(g.pcs_declarations.str())
}
b.writeln('\n// V includes:')
b.write_string(g.includes.str())
b.writeln('\n// Enum definitions:')
b.write_string(g.enum_typedefs.str())
b.writeln('\n// V type definitions:')
b.write_string(g.type_definitions.str())
b.writeln('\n// V alias definitions:')
b.write_string(g.alias_definitions.str())
b.writeln('\n// V shared types:')
b.write_string(g.shared_types.str())
b.writeln('\n// V Option_xxx definitions:')
b.write_string(g.options.str())
b.writeln('\n// V result_xxx definitions:')
b.write_string(g.out_results.str())
b.writeln('\n// V json forward decls:')
b.write_string(g.json_forward_decls.str())
b.writeln('\n// V definitions:')
b.write_string(g.definitions.str())
interface_table := g.interface_table()
if interface_table.len > 0 {
b.writeln('\n// V interface table:')
b.write_string(interface_table)
}
if g.gowrappers.len > 0 {
b.writeln('\n// V gowrappers:')
b.write_string(g.gowrappers.str())
}
if g.hotcode_definitions.len > 0 {
b.writeln('\n// V hotcode definitions:')
b.write_string(g.hotcode_definitions.str())
}
if g.embedded_data.len > 0 {
b.writeln('\n// V embedded data:')
b.write_string(g.embedded_data.str())
}
if g.shared_functions.len > 0 {
b.writeln('\n// V shared type functions:')
b.write_string(g.shared_functions.str())
b.write_string(c_concurrency_helpers)
}
if g.channel_definitions.len > 0 {
b.writeln('\n// V channel code:')
b.write_string(g.channel_definitions.str())
}
if g.stringliterals.len > 0 {
b.writeln('\n// V stringliterals:')
b.write_string(g.stringliterals.str())
}
if g.auto_str_funcs.len > 0 {
// if g.pref.build_mode != .build_module {
b.writeln('\n// V auto str functions:')
b.write_string(g.auto_str_funcs.str())
// }
}
if g.dump_funcs.len > 0 {
b.writeln('\n// V dump functions:')
b.write_string(g.dump_funcs.str())
}
if g.auto_fn_definitions.len > 0 {
for fn_def in g.auto_fn_definitions {
b.writeln(fn_def)
}
}
if g.anon_fn_definitions.len > 0 {
if g.nr_closures > 0 {
b.writeln('\n// V closure helpers')
b.writeln(c_closure_helpers(g.pref))
}
for fn_def in g.anon_fn_definitions {
b.writeln(fn_def)
}
}
b.writeln('\n// V out')
b.write_string(g.out.str())
b.writeln('\n// THE END.')
g.timers.show('cgen common')
res := b.str()
$if trace_all_generic_fn_keys ? {
gkeys := g.table.fn_generic_types.keys()
for gkey in gkeys {
eprintln('>> g.table.fn_generic_types key: $gkey')
}
}
unsafe { b.free() }
unsafe { g.free_builders() }
return res
}
fn cgen_process_one_file_cb(p &pool.PoolProcessor, idx int, wid int) &Gen {
file := p.get_item<&ast.File>(idx)
mut global_g := &Gen(p.get_shared_context())
mut g := &Gen{
file: file
out: strings.new_builder(512000)
cheaders: strings.new_builder(15000)
includes: strings.new_builder(100)
typedefs: strings.new_builder(100)
type_definitions: strings.new_builder(100)
alias_definitions: strings.new_builder(100)
definitions: strings.new_builder(100)
gowrappers: strings.new_builder(100)
stringliterals: strings.new_builder(100)
auto_str_funcs: strings.new_builder(100)
comptime_definitions: strings.new_builder(100)
pcs_declarations: strings.new_builder(100)
hotcode_definitions: strings.new_builder(100)
embedded_data: strings.new_builder(1000)
options: strings.new_builder(100)
out_results: strings.new_builder(100)
shared_types: strings.new_builder(100)
shared_functions: strings.new_builder(100)
channel_definitions: strings.new_builder(100)
json_forward_decls: strings.new_builder(100)
enum_typedefs: strings.new_builder(100)
sql_buf: strings.new_builder(100)
init: strings.new_builder(100)
global_init: strings.new_builder(0)
cleanup: strings.new_builder(100)
table: global_g.table
pref: global_g.pref
fn_decl: 0
indent: -1
module_built: global_g.module_built
timers: util.new_timers(
should_print: global_g.timers_should_print
label: 'cgen_process_one_file_cb idx: $idx, wid: $wid'
)
inner_loop: &ast.EmptyStmt{}
field_data_type: ast.Type(global_g.table.find_type_idx('FieldData'))
array_sort_fn: global_g.array_sort_fn
waiter_fns: global_g.waiter_fns
threaded_fns: global_g.threaded_fns
done_optionals: global_g.done_optionals
is_autofree: global_g.pref.autofree
referenced_fns: global_g.referenced_fns
is_cc_msvc: global_g.is_cc_msvc
}
g.gen_file()
return g
}
// free_builders should be called only when a Gen would NOT be used anymore
// it frees the bulk of the memory that is private to the Gen instance
// (the various string builders)
[unsafe]
pub fn (mut g Gen) free_builders() {
unsafe {
g.out.free()
g.cheaders.free()
g.includes.free()
g.typedefs.free()
g.type_definitions.free()
g.alias_definitions.free()
g.definitions.free()
g.global_init.free()
g.init.free()
g.cleanup.free()
g.gowrappers.free()
g.stringliterals.free()
g.auto_str_funcs.free()
g.dump_funcs.free()
g.comptime_definitions.free()
g.pcs_declarations.free()
g.hotcode_definitions.free()
g.embedded_data.free()
g.shared_types.free()
g.shared_functions.free()
g.channel_definitions.free()
g.options.free()
g.out_results.free()
g.json_forward_decls.free()
g.enum_typedefs.free()
g.sql_buf.free()
for _, mut v in g.global_inits {
v.free()
}
for _, mut v in g.inits {
v.free()
}
for _, mut v in g.cleanups {
v.free()
}
}
}
pub fn (mut g Gen) gen_file() {
g.timers.start('cgen_file $g.file.path')
g.unique_file_path_hash = fnv1a.sum64_string(g.file.path)
if g.pref.is_vlines {
g.vlines_path = util.vlines_escape_path(g.file.path, g.pref.ccompiler)
g.is_vlines_enabled = true
g.inside_ternary = 0
}
g.stmts(g.file.stmts)
// Transfer embedded files
for path in g.file.embedded_files {
if path !in g.embedded_files {
g.embedded_files << path
}
}
g.timers.show('cgen_file $g.file.path')
}
pub fn (g &Gen) hashes() string {
mut res := c_commit_hash_default.replace('@@@', version.vhash())
res += c_current_commit_hash_default.replace('@@@', version.githash(g.pref.building_v))
return res
}
pub fn (mut g Gen) init() {
if g.pref.custom_prelude != '' {
g.cheaders.writeln(g.pref.custom_prelude)
} else if !g.pref.no_preludes {
g.cheaders.writeln('// Generated by the V compiler')
if g.pref.os == .wasm32 {
g.cheaders.writeln('#define VWASM 1')
// Include <stdint.h> instead of <inttypes.h> for WASM target
g.cheaders.writeln('#include <stdint.h>')
g.cheaders.writeln('#include <stddef.h>')
} else {
tcc_undef_has_include := '
#if defined(__TINYC__) && defined(__has_include)
// tcc does not support has_include properly yet, turn it off completely
#undef __has_include
#endif'
g.cheaders.writeln(tcc_undef_has_include)
g.includes.writeln(tcc_undef_has_include)
if g.pref.os == .freebsd {
g.cheaders.writeln('#include <inttypes.h>')
g.cheaders.writeln('#include <stddef.h>')
} else {
g.cheaders.writeln(get_guarded_include_text('<inttypes.h>', 'The C compiler can not find <inttypes.h>. Please install build-essentials')) // int64_t etc
if g.pref.os == .ios {
g.cheaders.writeln(get_guarded_include_text('<stdbool.h>', 'The C compiler can not find <stdbool.h>. Please install build-essentials')) // bool, true, false
}
g.cheaders.writeln(get_guarded_include_text('<stddef.h>', 'The C compiler can not find <stddef.h>. Please install build-essentials')) // size_t, ptrdiff_t
}
}
if g.pref.nofloat {
g.cheaders.writeln('#define VNOFLOAT 1')
}
g.cheaders.writeln(c_builtin_types)
if g.pref.is_bare {
g.cheaders.writeln(c_bare_headers)
} else {
g.cheaders.writeln(c_headers)
}
if !g.pref.skip_unused || g.table.used_maps > 0 {
g.cheaders.writeln(c_wyhash_headers)
}
}
if g.pref.os == .ios {
g.cheaders.writeln('#define __TARGET_IOS__ 1')
g.cheaders.writeln('#include <spawn.h>')
}
g.write_builtin_types()
g.write_typedef_types()
g.write_typeof_functions()
g.write_sorted_types()
g.write_multi_return_types()
g.definitions.writeln('// end of definitions #endif')
//
if !g.pref.no_builtin {
g.stringliterals.writeln('')
g.stringliterals.writeln('// >> string literal consts')
if g.pref.build_mode != .build_module {
g.stringliterals.writeln('void vinit_string_literals(void){')
}
}
if g.pref.compile_defines_all.len > 0 {
g.comptime_definitions.writeln('// V compile time defines by -d or -define flags:')
g.comptime_definitions.writeln('// All custom defines : ' +
g.pref.compile_defines_all.join(','))
g.comptime_definitions.writeln('// Turned ON custom defines: ' +
g.pref.compile_defines.join(','))
for cdefine in g.pref.compile_defines {
g.comptime_definitions.writeln('#define CUSTOM_DEFINE_$cdefine')
}
g.comptime_definitions.writeln('')
}
if g.table.gostmts > 0 {
g.comptime_definitions.writeln('#define __VTHREADS__ (1)')
}
if g.pref.gc_mode in [.boehm_full, .boehm_incr, .boehm_full_opt, .boehm_incr_opt, .boehm_leak] {
g.comptime_definitions.writeln('#define _VGCBOEHM (1)')
}
if g.pref.is_debug || 'debug' in g.pref.compile_defines {
g.comptime_definitions.writeln('#define _VDEBUG (1)')
}
if g.pref.is_prod || 'prod' in g.pref.compile_defines {
g.comptime_definitions.writeln('#define _VPROD (1)')
}
if g.pref.is_test || 'test' in g.pref.compile_defines {
g.comptime_definitions.writeln('#define _VTEST (1)')
}
if g.pref.is_prof || 'profile' in g.pref.compile_defines {
g.comptime_definitions.writeln('#define _VPROFILE (1)')
}
if g.pref.autofree {
g.comptime_definitions.writeln('#define _VAUTOFREE (1)')
} else {
g.comptime_definitions.writeln('#define _VAUTOFREE (0)')
}
if g.pref.prealloc {
g.comptime_definitions.writeln('#define _VPREALLOC (1)')
}
if g.pref.use_cache {
g.comptime_definitions.writeln('#define _VUSECACHE (1)')
}
if g.pref.build_mode == .build_module {
g.comptime_definitions.writeln('#define _VBUILDMODULE (1)')
}
if g.pref.is_livemain || g.pref.is_liveshared {
g.generate_hotcode_reloading_declarations()
}
// Obfuscate only functions in the main module for now.
// Generate the obf_ast.
if g.pref.obfuscate {
mut i := 0
// fns
for key, f in g.table.fns {
if f.mod != 'main' && key != 'main' { // !key.starts_with('main.') {
continue
}
g.obf_table[key] = '_f$i'
i++
}
// methods
for type_sym in g.table.type_symbols {
if type_sym.mod != 'main' {
continue
}
for method in type_sym.methods {
g.obf_table[type_sym.name + '.' + method.name] = '_f$i'
i++
}
}
}
// we know that this is being called before the multi-threading starts
// and this is being called in the main thread, so we can mutate the table
mut muttable := unsafe { &ast.Table(g.table) }
muttable.used_fns['v_segmentation_fault_handler'] = true
muttable.used_fns['eprintln'] = true
muttable.used_fns['print_backtrace'] = true
muttable.used_fns['exit'] = true
}
pub fn (mut g Gen) finish() {
if !g.pref.no_builtin {
if g.pref.build_mode != .build_module {
g.stringliterals.writeln('}')
}
g.stringliterals.writeln('// << string literal consts')
g.stringliterals.writeln('')
}
if g.pref.is_prof && g.pref.build_mode != .build_module {
g.gen_vprint_profile_stats()
}
if g.pref.is_livemain || g.pref.is_liveshared {
g.generate_hotcode_reloader_code()
}
g.handle_embedded_files_finish()
if g.pref.is_test {
g.gen_c_main_for_tests()
} else {
g.gen_c_main()
}
}
pub fn (mut g Gen) write_typeof_functions() {
g.writeln('')
g.writeln('// >> typeof() support for sum types / interfaces')
for ityp, sym in g.table.type_symbols {
if sym.kind == .sum_type {
sum_info := sym.info as ast.SumType
if sum_info.is_generic {
continue
}
g.writeln('static char * v_typeof_sumtype_${sym.cname}(int sidx) { /* $sym.name */ ')
if g.pref.build_mode == .build_module {
g.writeln('\t\tif( sidx == _v_type_idx_${sym.cname}() ) return "${util.strip_main_name(sym.name)}";')
for v in sum_info.variants {
subtype := g.table.sym(v)
g.writeln('\tif( sidx == _v_type_idx_${subtype.cname}() ) return "${util.strip_main_name(subtype.name)}";')
}
g.writeln('\treturn "unknown ${util.strip_main_name(sym.name)}";')
} else {
tidx := g.table.find_type_idx(sym.name)
g.writeln('\tswitch(sidx) {')
g.writeln('\t\tcase $tidx: return "${util.strip_main_name(sym.name)}";')
for v in sum_info.variants {
subtype := g.table.sym(v)
g.writeln('\t\tcase $v.idx(): return "${util.strip_main_name(subtype.name)}";')
}
g.writeln('\t\tdefault: return "unknown ${util.strip_main_name(sym.name)}";')
g.writeln('\t}')
}
g.writeln('}')
g.writeln('')
g.writeln('static int v_typeof_sumtype_idx_${sym.cname}(int sidx) { /* $sym.name */ ')
if g.pref.build_mode == .build_module {
g.writeln('\t\tif( sidx == _v_type_idx_${sym.cname}() ) return ${int(ityp)};')
for v in sum_info.variants {
subtype := g.table.sym(v)
g.writeln('\tif( sidx == _v_type_idx_${subtype.cname}() ) return ${int(v)};')
}
g.writeln('\treturn ${int(ityp)};')
} else {
tidx := g.table.find_type_idx(sym.name)
g.writeln('\tswitch(sidx) {')
g.writeln('\t\tcase $tidx: return ${int(ityp)};')
for v in sum_info.variants {
g.writeln('\t\tcase $v.idx(): return ${int(v)};')
}
g.writeln('\t\tdefault: return ${int(ityp)};')
g.writeln('\t}')
}
g.writeln('}')
} else if sym.kind == .interface_ {
if sym.info !is ast.Interface {
continue
}
inter_info := sym.info as ast.Interface
if inter_info.is_generic {
continue
}
g.definitions.writeln('static char * v_typeof_interface_${sym.cname}(int sidx);')
g.writeln('static char * v_typeof_interface_${sym.cname}(int sidx) { /* $sym.name */ ')
for t in inter_info.types {
sub_sym := g.table.sym(ast.mktyp(t))
g.writeln('\tif (sidx == _${sym.cname}_${sub_sym.cname}_index) return "${util.strip_main_name(sub_sym.name)}";')
}
g.writeln('\treturn "unknown ${util.strip_main_name(sym.name)}";')
g.writeln('}')
g.writeln('')
g.writeln('static int v_typeof_interface_idx_${sym.cname}(int sidx) { /* $sym.name */ ')
for t in inter_info.types {
sub_sym := g.table.sym(ast.mktyp(t))
g.writeln('\tif (sidx == _${sym.cname}_${sub_sym.cname}_index) return ${int(t)};')
}
g.writeln('\treturn ${int(ityp)};')
g.writeln('}')
}
}
g.writeln('// << typeof() support for sum types')
g.writeln('')
}
// V type to C typecc
fn (mut g Gen) typ(t ast.Type) string {
if t.has_flag(.optional) {
// Register an optional if it's not registered yet
return g.register_optional(t)
} else if t.has_flag(.result) {
return g.register_result(t)
} else {
return g.base_type(t)
}
}
fn (mut g Gen) base_type(_t ast.Type) string {
t := g.unwrap_generic(_t)
if g.pref.nofloat {
// todo compile time if for perf?
if t == ast.f32_type {
return 'u32'
} else if t == ast.f64_type {
return 'u64'
}
}
share := t.share()
mut styp := if share == .atomic_t { t.atomic_typename() } else { g.cc_type(t, true) }
if t.has_flag(.shared_f) {
styp = g.find_or_register_shared(t, styp)
}
if !t.has_flag(.variadic) {
nr_muls := g.unwrap_generic(t).nr_muls()
if nr_muls > 0 {
styp += strings.repeat(`*`, nr_muls)
}
}
return styp
}
fn (mut g Gen) generic_fn_name(types []ast.Type, before string, is_decl bool) string {
if types.len == 0 {
return before
}
// Using _T_ to differentiate between get<string> and get_string
// `foo<int>()` => `foo_T_int()`
mut name := before + '_T'
for typ in types {
name += '_' + strings.repeat_string('__ptr__', typ.nr_muls()) + g.typ(typ.set_nr_muls(0))
}
return name
}
fn (mut g Gen) expr_string(expr ast.Expr) string {
pos := g.out.len
g.expr(expr)
return g.out.cut_to(pos).trim_space()
}
fn (mut g Gen) expr_string_with_cast(expr ast.Expr, typ ast.Type, exp ast.Type) string {
pos := g.out.len
g.expr_with_cast(expr, typ, exp)
return g.out.cut_to(pos).trim_space()
}
// Surround a potentially multi-statement expression safely with `prepend` and `append`.
// (and create a statement)
fn (mut g Gen) expr_string_surround(prepend string, expr ast.Expr, append string) string {
pos := g.out.len
g.stmt_path_pos << pos
defer {
g.stmt_path_pos.delete_last()
}
g.write(prepend)
g.expr(expr)
g.write(append)
return g.out.cut_to(pos)
}
// TODO this really shouldnt be seperate from typ
// but I(emily) would rather have this generation
// all unified in one place so that it doesnt break
// if one location changes
fn (mut g Gen) optional_type_name(t ast.Type) (string, string) {
base := g.base_type(t)
mut styp := '_option_$base'
if t.is_ptr() {
styp = styp.replace('*', '_ptr')
}
return styp, base
}
fn (mut g Gen) result_type_name(t ast.Type) (string, string) {
base := g.base_type(t)
mut styp := '${c.result_name}_$base'
if t.is_ptr() {
styp = styp.replace('*', '_ptr')
}
return styp, base
}
fn (g Gen) optional_type_text(styp string, base string) string {
// replace void with something else
size := if base == 'void' {
'u8'
} else if base.starts_with('anon_fn') {
'void*'
} else {
base
}
ret := 'struct $styp {
byte state;
IError err;
byte data[sizeof($size) > 0 ? sizeof($size) : 1];
}'
return ret
}
fn (g Gen) result_type_text(styp string, base string) string {
// replace void with something else
size := if base == 'void' {
'u8'
} else if base.starts_with('anon_fn') {
'void*'
} else {
base
}
ret := 'struct $styp {
bool is_error;
IError err;
byte data[sizeof($size) > 0 ? sizeof($size) : 1];
}'
return ret
}
fn (mut g Gen) register_optional(t ast.Type) string {
styp, base := g.optional_type_name(t)
g.optionals[base] = styp
return styp
}
fn (mut g Gen) register_result(t ast.Type) string {
styp, base := g.result_type_name(t)
g.results[base] = styp
return styp
}
fn (mut g Gen) write_optionals() {
mut done := []string{}
rlock g.done_optionals {
done = g.done_optionals
}
for base, styp in g.optionals {
if base in done {
continue
}
done << base
g.typedefs.writeln('typedef struct $styp $styp;')
g.options.write_string(g.optional_type_text(styp, base) + ';\n\n')
}
}
fn (mut g Gen) write_results() {
mut done := []string{}
for base, styp in g.results {
if base in done {
continue
}
done << base
g.typedefs.writeln('typedef struct $styp $styp;')
g.out_results.write_string(g.result_type_text(styp, base) + ';\n\n')
}
}
fn (mut g Gen) find_or_register_shared(t ast.Type, base string) string {
g.shareds[t.idx()] = base
return '__shared__$base'
}
fn (mut g Gen) write_shareds() {
mut done_types := []int{}
for typ, base in g.shareds {
if typ in done_types {
continue
}
done_types << typ
sh_typ := '__shared__$base'
mtx_typ := 'sync__RwMutex'
g.shared_types.writeln('struct $sh_typ {')
g.shared_types.writeln('\t$mtx_typ mtx;')
g.shared_types.writeln('\t$base val;')
g.shared_types.writeln('};')
g.shared_functions.writeln('static inline voidptr __dup${sh_typ}(voidptr src, int sz) {')
g.shared_functions.writeln('\t$sh_typ* dest = memdup(src, sz);')
g.shared_functions.writeln('\tsync__RwMutex_init(&dest->mtx);')
g.shared_functions.writeln('\treturn dest;')
g.shared_functions.writeln('}')
g.typedefs.writeln('typedef struct $sh_typ $sh_typ;')
}
}
fn (mut g Gen) register_thread_void_wait_call() {
lock g.waiter_fns {
if '__v_thread_wait' in g.waiter_fns {
return
}
g.waiter_fns << '__v_thread_wait'
}
g.gowrappers.writeln('void __v_thread_wait(__v_thread thread) {')
if g.pref.os == .windows {
g.gowrappers.writeln('\tu32 stat = WaitForSingleObject(thread, INFINITE);')
} else {
g.gowrappers.writeln('\tint stat = pthread_join(thread, (void **)NULL);')
}
g.gowrappers.writeln('\tif (stat != 0) { _v_panic(_SLIT("unable to join thread")); }')
if g.pref.os == .windows {
g.gowrappers.writeln('\tCloseHandle(thread);')
}
g.gowrappers.writeln('}')
}
fn (mut g Gen) register_thread_array_wait_call(eltyp string) string {
is_void := eltyp == 'void'
thread_typ := if is_void { '__v_thread' } else { '__v_thread_$eltyp' }
ret_typ := if is_void { 'void' } else { 'Array_$eltyp' }
thread_arr_typ := 'Array_$thread_typ'
fn_name := '${thread_arr_typ}_wait'
mut should_register := false
lock g.waiter_fns {
if fn_name !in g.waiter_fns {
g.waiter_fns << fn_name
should_register = true
}
}
if should_register {
if is_void {
g.register_thread_void_wait_call()
g.gowrappers.writeln('
void ${fn_name}($thread_arr_typ a) {
for (int i = 0; i < a.len; ++i) {
$thread_typ t = (($thread_typ*)a.data)[i];
if (t == 0) continue;
__v_thread_wait(t);
}
}')
} else {
g.gowrappers.writeln('
$ret_typ ${fn_name}($thread_arr_typ a) {
$ret_typ res = __new_array_with_default(a.len, a.len, sizeof($eltyp), 0);
for (int i = 0; i < a.len; ++i) {
$thread_typ t = (($thread_typ*)a.data)[i];')
if g.pref.os == .windows {
g.gowrappers.writeln('\t\tif (t.handle == 0) continue;')
} else {
g.gowrappers.writeln('\t\tif (t == 0) continue;')
}
g.gowrappers.writeln('\t\t(($eltyp*)res.data)[i] = __v_thread_${eltyp}_wait(t);
}
return res;
}')
}
}
return fn_name
}
fn (mut g Gen) register_chan_pop_optional_call(opt_el_type string, styp string) {
g.chan_pop_optionals[opt_el_type] = styp
}
fn (mut g Gen) write_chan_pop_optional_fns() {
mut done := []string{}
for opt_el_type, styp in g.chan_pop_optionals {
if opt_el_type in done {
continue
}
done << opt_el_type
g.channel_definitions.writeln('
static inline $opt_el_type __Option_${styp}_popval($styp ch) {
$opt_el_type _tmp = {0};
if (sync__Channel_try_pop_priv(ch, _tmp.data, false)) {
return ($opt_el_type){ .state = 2, .err = _v_error(_SLIT("channel closed")), .data = {EMPTY_STRUCT_INITIALIZATION} };
}
return _tmp;
}')
}
}
fn (mut g Gen) register_chan_push_optional_fn(el_type string, styp string) {
g.chan_push_optionals[styp] = el_type
}
fn (mut g Gen) write_chan_push_optional_fns() {
mut done := []string{}
for styp, el_type in g.chan_push_optionals {
if styp in done {
continue
}
done << styp
g.register_optional(ast.void_type.set_flag(.optional))
g.channel_definitions.writeln('
static inline ${c.option_name}_void __Option_${styp}_pushval($styp ch, $el_type e) {
if (sync__Channel_try_push_priv(ch, &e, false)) {
return (${c.option_name}_void){ .state = 2, .err = _v_error(_SLIT("channel closed")), .data = {EMPTY_STRUCT_INITIALIZATION} };
}
return (${c.option_name}_void){0};
}')
}
}
// cc_type whether to prefix 'struct' or not (C__Foo -> struct Foo)
fn (mut g Gen) cc_type(typ ast.Type, is_prefix_struct bool) string {
sym := g.table.sym(g.unwrap_generic(typ))
mut styp := sym.cname
// TODO: this needs to be removed; cgen shouldn't resolve generic types (job of checker)
match sym.info {
ast.Struct, ast.Interface, ast.SumType {
if sym.info.is_generic {
mut sgtyps := '_T'
for gt in sym.info.generic_types {
gts := g.table.sym(g.unwrap_generic(gt))
sgtyps += '_$gts.cname'
}
styp += sgtyps
}
}
else {}
}
if is_prefix_struct && sym.language == .c {
styp = styp[3..]
if sym.kind == .struct_ {
info := sym.info as ast.Struct
if !info.is_typedef {
styp = 'struct $styp'
}
}
}
return styp
}
[inline]
fn (g &Gen) type_sidx(t ast.Type) string {
if g.pref.build_mode == .build_module {
sym := g.table.sym(t)
return '_v_type_idx_${sym.cname}()'
}
return t.idx().str()
}
//
pub fn (mut g Gen) write_typedef_types() {
for sym in g.table.type_symbols {
if sym.name in c.builtins {
continue
}
match sym.kind {
.array {
info := sym.info as ast.Array
elem_sym := g.table.sym(info.elem_type)
if elem_sym.kind != .placeholder && !info.elem_type.has_flag(.generic) {
g.type_definitions.writeln('typedef array $sym.cname;')
}
}
.array_fixed {
info := sym.info as ast.ArrayFixed
elem_sym := g.table.sym(info.elem_type)
if elem_sym.is_builtin() {
// .array_fixed {
styp := sym.cname
// array_fixed_char_300 => char x[300]
len := styp.after('_')
mut fixed := g.typ(info.elem_type)
if elem_sym.info is ast.FnType {
pos := g.out.len
g.write_fn_ptr_decl(&elem_sym.info, '')
fixed = g.out.cut_to(pos)
mut def_str := 'typedef $fixed;'
def_str = def_str.replace_once('(*)', '(*$styp[$len])')
g.type_definitions.writeln(def_str)
} else {
g.type_definitions.writeln('typedef $fixed $styp [$len];')
}
}
}
.chan {
if sym.name != 'chan' {
g.type_definitions.writeln('typedef chan $sym.cname;')
chan_inf := sym.chan_info()
chan_elem_type := chan_inf.elem_type
if !chan_elem_type.has_flag(.generic) {
el_stype := g.typ(chan_elem_type)
g.channel_definitions.writeln('
static inline $el_stype __${sym.cname}_popval($sym.cname ch) {
$el_stype val;
sync__Channel_try_pop_priv(ch, &val, false);
return val;
}')
g.channel_definitions.writeln('
static inline void __${sym.cname}_pushval($sym.cname ch, $el_stype val) {
sync__Channel_try_push_priv(ch, &val, false);
}')
}
}
}
.map {
g.type_definitions.writeln('typedef map $sym.cname;')
}
else {
continue
}
}
}
for sym in g.table.type_symbols {
if sym.kind == .alias && sym.name !in c.builtins {
g.write_alias_typesymbol_declaration(sym)
}
}
for sym in g.table.type_symbols {
if sym.kind == .function && sym.name !in c.builtins {
g.write_fn_typesymbol_declaration(sym)
}
}
// Generating interfaces after all the common types have been defined
// to prevent generating interface struct before definition of field types
for sym in g.table.type_symbols {
if sym.kind == .interface_ && sym.name !in c.builtins {
g.write_interface_typedef(sym)
}
}
for sym in g.table.type_symbols {
if sym.kind == .interface_ && sym.name !in c.builtins {
g.write_interface_typesymbol_declaration(sym)
}
}
}
pub fn (mut g Gen) write_alias_typesymbol_declaration(sym ast.TypeSymbol) {
parent := g.table.type_symbols[sym.parent_idx]
is_c_parent := parent.name.len > 2 && parent.name[0] == `C` && parent.name[1] == `.`
mut is_typedef := false
mut is_fixed_array_of_non_builtin := false
if parent.info is ast.Struct {
is_typedef = parent.info.is_typedef
}
mut parent_styp := parent.cname
if is_c_parent {
if !is_typedef {
parent_styp = 'struct ' + parent.cname[3..]
} else {
parent_styp = parent.cname[3..]
}
} else {
if sym.info is ast.Alias {
parent_styp = g.typ(sym.info.parent_type)
parent_sym := g.table.sym(sym.info.parent_type)
if parent_sym.info is ast.ArrayFixed {
elem_sym := g.table.sym(parent_sym.info.elem_type)
if !elem_sym.is_builtin() {
is_fixed_array_of_non_builtin = true
}
}
}
}
if parent_styp == 'byte' && sym.cname == 'u8' {
// TODO: remove this check; it is here just to fix V rebuilding in -cstrict mode with clang-12
return
}
if is_fixed_array_of_non_builtin {
g.alias_definitions.writeln('typedef $parent_styp $sym.cname;')
} else {
g.type_definitions.writeln('typedef $parent_styp $sym.cname;')
}
}
pub fn (mut g Gen) write_interface_typedef(sym ast.TypeSymbol) {
struct_name := c_name(sym.cname)
g.typedefs.writeln('typedef struct $struct_name $struct_name;')
}
pub fn (mut g Gen) write_interface_typesymbol_declaration(sym ast.TypeSymbol) {
if sym.info !is ast.Interface {
return
}
info := sym.info as ast.Interface
if info.is_generic {
return
}
struct_name := c_name(sym.cname)
g.type_definitions.writeln('struct $struct_name {')
g.type_definitions.writeln('\tunion {')
g.type_definitions.writeln('\t\tvoid* _object;')
for variant in info.types {
mk_typ := ast.mktyp(variant)
if mk_typ != variant && mk_typ in info.types {
continue
}
vcname := g.table.sym(mk_typ).cname
g.type_definitions.writeln('\t\t$vcname* _$vcname;')
}
g.type_definitions.writeln('\t};')
g.type_definitions.writeln('\tint _typ;')
for field in info.fields {
styp := g.typ(field.typ)
cname := c_name(field.name)
g.type_definitions.writeln('\t$styp* $cname;')
}
g.type_definitions.writeln('};')
}
pub fn (mut g Gen) write_fn_typesymbol_declaration(sym ast.TypeSymbol) {
info := sym.info as ast.FnType
func := info.func
is_fn_sig := func.name == ''
not_anon := !info.is_anon
mut has_generic_arg := false
for param in func.params {
if param.typ.has_flag(.generic) {
has_generic_arg = true
break
}
}
if !info.has_decl && (not_anon || is_fn_sig) && !func.return_type.has_flag(.generic)
&& !has_generic_arg {
fn_name := sym.cname
mut call_conv := ''
mut msvc_call_conv := ''
for attr in func.attrs {
match attr.name {
'callconv' {
if g.is_cc_msvc {
msvc_call_conv = '__$attr.arg '
} else {
call_conv = '$attr.arg'
}
}
else {}
}
}
call_conv_attribute_suffix := if call_conv.len != 0 {
'__attribute__(($call_conv))'
} else {
''
}
g.type_definitions.write_string('typedef ${g.typ(func.return_type)} ($msvc_call_conv*$fn_name)(')
for i, param in func.params {
g.type_definitions.write_string(g.typ(param.typ))
if i < func.params.len - 1 {
g.type_definitions.write_string(',')
}
}
g.type_definitions.writeln(')$call_conv_attribute_suffix;')
}
}
pub fn (mut g Gen) write_multi_return_types() {
g.typedefs.writeln('\n// BEGIN_multi_return_typedefs')
g.type_definitions.writeln('\n// BEGIN_multi_return_structs')
for sym in g.table.type_symbols {
if sym.kind != .multi_return {
continue
}
info := sym.mr_info()
if info.types.filter(it.has_flag(.generic)).len > 0 {
continue
}
g.typedefs.writeln('typedef struct $sym.cname $sym.cname;')
g.type_definitions.writeln('struct $sym.cname {')
for i, mr_typ in info.types {
type_name := g.typ(mr_typ)
g.type_definitions.writeln('\t$type_name arg$i;')
}
g.type_definitions.writeln('};\n')
}
g.typedefs.writeln('// END_multi_return_typedefs\n')
g.type_definitions.writeln('// END_multi_return_structs\n')
}
pub fn (mut g Gen) write(s string) {
$if trace_gen ? {
eprintln('gen file: ${g.file.path:-30} | last_fn_c_name: ${g.last_fn_c_name:-45} | write: $s')
}
if g.indent > 0 && g.empty_line {
g.out.write_string(util.tabs(g.indent))
}
g.out.write_string(s)
g.empty_line = false
}
pub fn (mut g Gen) writeln(s string) {
$if trace_gen ? {
eprintln('gen file: ${g.file.path:-30} | last_fn_c_name: ${g.last_fn_c_name:-45} | writeln: $s')
}
if g.indent > 0 && g.empty_line {
g.out.write_string(util.tabs(g.indent))
}
g.out.writeln(s)
g.empty_line = true
}
pub fn (mut g Gen) new_tmp_var() string {
g.tmp_count++
return '_t$g.tmp_count'
}
pub fn (mut g Gen) new_global_tmp_var() string {
g.global_tmp_count++
return '_t$g.global_tmp_count'
}
pub fn (mut g Gen) new_tmp_declaration_name() string {
g.tmp_count_declarations++
return '_d$g.tmp_count_declarations'
}
pub fn (mut g Gen) current_tmp_var() string {
return '_t$g.tmp_count'
}
/*
pub fn (mut g Gen) new_tmp_var2() string {
g.tmp_count_af++
return '_tt$g.tmp_count_af'
}
*/
pub fn (mut g Gen) reset_tmp_count() {
g.tmp_count = 0
}
fn (mut g Gen) decrement_inside_ternary() {
key := g.inside_ternary.str()
for name in g.ternary_level_names[key] {
g.ternary_names.delete(name)
}
g.ternary_level_names.delete(key)
g.inside_ternary--
}
fn (mut g Gen) stmts(stmts []ast.Stmt) {
g.stmts_with_tmp_var(stmts, '')
}
fn is_noreturn_callexpr(expr ast.Expr) bool {
if expr is ast.CallExpr {
return expr.is_noreturn
}
return false
}
// tmp_var is used in `if` expressions only
fn (mut g Gen) stmts_with_tmp_var(stmts []ast.Stmt, tmp_var string) {
g.indent++
if g.inside_ternary > 0 {
g.write('(')
}
for i, stmt in stmts {
if i == stmts.len - 1 && tmp_var != '' {
// Handle if expressions, set the value of the last expression to the temp var.
if g.inside_if_optional || g.inside_match_optional {
g.set_current_pos_as_last_stmt_pos()
g.skip_stmt_pos = true
if stmt is ast.ExprStmt {
if stmt.typ == ast.error_type_idx || stmt.expr is ast.None {
g.writeln('${tmp_var}.state = 2;')
g.write('${tmp_var}.err = ')
g.expr(stmt.expr)
g.writeln(';')
} else {
mut styp := g.base_type(stmt.typ)
$if tinyc && x32 && windows {
if stmt.typ == ast.int_literal_type {
styp = 'int'
} else if stmt.typ == ast.float_literal_type {
styp = 'f64'
}
}
g.write('opt_ok2(&($styp[]) { ')
g.stmt(stmt)
g.writeln(' }, ($c.option_name*)(&$tmp_var), sizeof($styp));')
}
}
} else {
g.set_current_pos_as_last_stmt_pos()
g.skip_stmt_pos = true
mut is_noreturn := false
if stmt is ast.ExprStmt {
is_noreturn = is_noreturn_callexpr(stmt.expr)
}
if !is_noreturn {
g.write('$tmp_var = ')
}
g.stmt(stmt)
if !g.out.last_n(2).contains(';') {
g.writeln(';')
}
}
} else {
g.stmt(stmt)
if (g.inside_if_optional || g.inside_match_optional) && stmt is ast.ExprStmt {
g.writeln(';')
}
}
g.skip_stmt_pos = false
if g.inside_ternary > 0 && i < stmts.len - 1 {
g.write(',')
}
}
g.indent--
if g.inside_ternary > 0 {
g.write('')
g.write(')')
}
if g.is_autofree && !g.inside_vweb_tmpl && stmts.len > 0 {
// use the first stmt to get the scope
stmt := stmts[0]
// stmt := stmts[stmts.len-1]
if stmt !is ast.FnDecl && g.inside_ternary == 0 {
// g.trace_autofree('// autofree scope')
// g.trace_autofree('// autofree_scope_vars($stmt.pos.pos) | ${typeof(stmt)}')
// go back 1 position is important so we dont get the
// internal scope of for loops and possibly other nodes
// g.autofree_scope_vars(stmt.pos.pos - 1)
mut stmt_pos := stmt.pos
if stmt_pos.pos == 0 {
// Do not autofree if the position is 0, since the correct scope won't be found.
// Report a bug, since position shouldn't be 0 for most nodes.
if stmt is ast.Module {
return
}
if stmt is ast.ExprStmt {
// For some reason ExprStmt.pos is 0 when ExprStmt.expr is comp if expr
// Extract the pos. TODO figure out why and fix.
stmt_pos = stmt.expr.pos()
}
if stmt_pos.pos == 0 {
$if trace_autofree ? {
println('autofree: first stmt pos = 0. $stmt.type_name()')
}
return
}
}
g.autofree_scope_vars(stmt_pos.pos - 1, stmt_pos.line_nr, false)
}
}
}
[inline]
fn (mut g Gen) write_v_source_line_info(pos token.Pos) {
if g.inside_ternary == 0 && g.pref.is_vlines && g.is_vlines_enabled {
nline := pos.line_nr + 1
lineinfo := '\n#line $nline "$g.vlines_path"'
$if trace_gen_source_line_info ? {
eprintln('> lineinfo: ${lineinfo.replace('\n', '')}')
}
g.writeln(lineinfo)
}
}
fn (mut g Gen) stmt(node ast.Stmt) {
if !g.skip_stmt_pos {
g.set_current_pos_as_last_stmt_pos()
}
match node {
ast.EmptyStmt {}
ast.AsmStmt {
g.write_v_source_line_info(node.pos)
g.gen_asm_stmt(node)
}
ast.AssertStmt {
g.write_v_source_line_info(node.pos)
g.gen_assert_stmt(node)
}
ast.AssignStmt {
g.write_v_source_line_info(node.pos)
g.gen_assign_stmt(node)
}
ast.Block {
g.write_v_source_line_info(node.pos)
if node.is_unsafe {
g.writeln('{ // Unsafe block')
} else {
g.writeln('{')
}
g.stmts(node.stmts)
g.writeln('}')
}
ast.BranchStmt {
g.write_v_source_line_info(node.pos)
if node.label != '' {
x := g.labeled_loops[node.label] or {
panic('$node.label doesn\'t exist $g.file.path, $node.pos')
}
match x {
ast.ForCStmt {
if x.scope.contains(g.cur_lock.pos.pos) {
g.unlock_locks()
}
}
ast.ForInStmt {
if x.scope.contains(g.cur_lock.pos.pos) {
g.unlock_locks()
}
}
ast.ForStmt {
if x.scope.contains(g.cur_lock.pos.pos) {
g.unlock_locks()
}
}
else {}
}
if node.kind == .key_break {
g.writeln('goto ${node.label}__break;')
} else {
// assert node.kind == .key_continue
g.writeln('goto ${node.label}__continue;')
}
} else {
inner_loop := g.inner_loop
match inner_loop {
ast.ForCStmt {
if inner_loop.scope.contains(g.cur_lock.pos.pos) {
g.unlock_locks()
}
}
ast.ForInStmt {
if inner_loop.scope.contains(g.cur_lock.pos.pos) {
g.unlock_locks()
}
}
ast.ForStmt {
if inner_loop.scope.contains(g.cur_lock.pos.pos) {
g.unlock_locks()
}
}
else {}
}
// continue or break
if g.is_autofree && !g.is_builtin_mod {
g.trace_autofree('// free before continue/break')
g.autofree_scope_vars_stop(node.pos.pos - 1, node.pos.line_nr, true,
g.branch_parent_pos)
}
g.writeln('$node.kind;')
}
}
ast.ConstDecl {
g.write_v_source_line_info(node.pos)
// if g.pref.build_mode != .build_module {
g.const_decl(node)
// }
}
ast.ComptimeFor {
g.comptime_for(node)
}
ast.DeferStmt {
mut defer_stmt := node
defer_stmt.ifdef = g.defer_ifdef
g.writeln('${g.defer_flag_var(defer_stmt)} = true;')
g.defer_stmts << defer_stmt
}
ast.EnumDecl {
g.enum_decl(node)
}
ast.ExprStmt {
g.write_v_source_line_info(node.pos)
// af := g.autofree && node.expr is ast.CallExpr && !g.is_builtin_mod
// if af {
// g.autofree_call_pregen(node.expr as ast.CallExpr)
// }
old_is_void_expr_stmt := g.is_void_expr_stmt
g.is_void_expr_stmt = !node.is_expr
if node.typ != ast.void_type && g.expected_cast_type != 0 && node.expr !is ast.MatchExpr {
g.expr_with_cast(node.expr, node.typ, g.expected_cast_type)
} else {
g.expr(node.expr)
}
g.is_void_expr_stmt = old_is_void_expr_stmt
// if af {
// g.autofree_call_postgen()
// }
if g.inside_ternary == 0 && !g.inside_if_optional && !g.inside_match_optional
&& !node.is_expr && node.expr !is ast.IfExpr {
g.writeln(';')
}
}
ast.FnDecl {
g.fn_decl(node)
}
ast.ForCStmt {
prev_branch_parent_pos := g.branch_parent_pos
g.branch_parent_pos = node.pos.pos
save_inner_loop := g.inner_loop
g.inner_loop = unsafe { &node }
if node.label != '' {
g.labeled_loops[node.label] = unsafe { &node }
}
g.write_v_source_line_info(node.pos)
g.for_c_stmt(node)
g.branch_parent_pos = prev_branch_parent_pos
g.labeled_loops.delete(node.label)
g.inner_loop = save_inner_loop
}
ast.ForInStmt {
prev_branch_parent_pos := g.branch_parent_pos
g.branch_parent_pos = node.pos.pos
save_inner_loop := g.inner_loop
g.inner_loop = unsafe { &node }
if node.label != '' {
g.labeled_loops[node.label] = unsafe { &node }
}
g.write_v_source_line_info(node.pos)
g.for_in_stmt(node)
g.branch_parent_pos = prev_branch_parent_pos
g.labeled_loops.delete(node.label)
g.inner_loop = save_inner_loop
}
ast.ForStmt {
prev_branch_parent_pos := g.branch_parent_pos
g.branch_parent_pos = node.pos.pos
save_inner_loop := g.inner_loop
g.inner_loop = unsafe { &node }
if node.label != '' {
g.labeled_loops[node.label] = unsafe { &node }
}
g.write_v_source_line_info(node.pos)
g.for_stmt(node)
g.branch_parent_pos = prev_branch_parent_pos
g.labeled_loops.delete(node.label)
g.inner_loop = save_inner_loop
}
ast.GlobalDecl {
g.global_decl(node)
}
ast.GotoLabel {
g.writeln('${c_name(node.name)}: {}')
}
ast.GotoStmt {
g.write_v_source_line_info(node.pos)
g.writeln('goto ${c_name(node.name)};')
}
ast.HashStmt {
line_nr := node.pos.line_nr + 1
mut ct_condition := ''
if node.ct_conds.len > 0 {
ct_condition_start := g.out.len
for idx, ct_expr in node.ct_conds {
g.comptime_if_cond(ct_expr, false)
if idx < node.ct_conds.len - 1 {
g.write(' && ')
}
}
ct_condition = g.out.cut_to(ct_condition_start).trim_space()
// dump(node)
// dump(ct_condition)
}
// #include etc
if node.kind == 'include' {
mut missing_message := 'Header file $node.main, needed for module `$node.mod` was not found.'
if node.msg != '' {
missing_message += ' ${node.msg}.'
} else {
missing_message += ' Please install the corresponding development headers.'
}
mut guarded_include := get_guarded_include_text(node.main, missing_message)
if node.main == '<errno.h>' {
// fails with musl-gcc and msvc; but an unguarded include works:
guarded_include = '#include $node.main'
}
if node.main.contains('.m') {
g.definitions.writeln('\n')
if ct_condition.len > 0 {
g.definitions.writeln('#if $ct_condition')
}
// Objective C code import, include it after V types, so that e.g. `string` is
// available there
g.definitions.writeln('// added by module `$node.mod`, file: ${os.file_name(node.source_file)}:$line_nr:')
g.definitions.writeln(guarded_include)
if ct_condition.len > 0 {
g.definitions.writeln('#endif // \$if $ct_condition')
}
g.definitions.writeln('\n')
} else {
g.includes.writeln('\n')
if ct_condition.len > 0 {
g.includes.writeln('#if $ct_condition')
}
g.includes.writeln('// added by module `$node.mod`, file: ${os.file_name(node.source_file)}:$line_nr:')
g.includes.writeln(guarded_include)
if ct_condition.len > 0 {
g.includes.writeln('#endif // \$if $ct_condition')
}
g.includes.writeln('\n')
}
} else if node.kind == 'insert' {
if ct_condition.len > 0 {
g.includes.writeln('#if $ct_condition')
}
g.includes.writeln('// inserted by module `$node.mod`, file: ${os.file_name(node.source_file)}:$line_nr:')
g.includes.writeln(node.val)
if ct_condition.len > 0 {
g.includes.writeln('#endif // \$if $ct_condition')
}
} else if node.kind == 'define' {
if ct_condition.len > 0 {
g.includes.writeln('#if $ct_condition')
}
g.includes.writeln('// defined by module `$node.mod`')
g.includes.writeln('#define $node.main')
if ct_condition.len > 0 {
g.includes.writeln('#endif // \$if $ct_condition')
}
}
}
ast.Import {}
ast.InterfaceDecl {
// definitions are sorted and added in write_types
ts := g.table.sym(node.typ)
if !(ts.info as ast.Interface).is_generic {
for method in node.methods {
if method.return_type.has_flag(.optional) {
// Register an optional if it's not registered yet
g.register_optional(method.return_type)
}
if method.return_type.has_flag(.result) {
// Register a result if it's not registered yet
g.register_result(method.return_type)
}
}
}
}
ast.Module {
// g.is_builtin_mod = node.name == 'builtin'
// g.is_builtin_mod = node.name in ['builtin', 'strconv', 'strings', 'dlmalloc']
g.is_builtin_mod = util.module_is_builtin(node.name)
// g.cur_mod = node.name
g.cur_mod = node
}
ast.NodeError {}
ast.Return {
g.return_stmt(node)
}
ast.SqlStmt {
g.sql_stmt(node)
}
ast.StructDecl {
name := if node.language == .c {
util.no_dots(node.name)
} else if node.name in ['array', 'string'] {
node.name
} else {
c_name(node.name)
}
// TODO For some reason, build fails with autofree with this line
// as it's only informative, comment it for now
// g.gen_attrs(node.attrs)
// g.writeln('typedef struct {')
// for field in it.fields {
// field_type_sym := g.table.sym(field.typ)
// g.writeln('\t$field_type_sym.name $field.name;')
// }
// g.writeln('} $name;')
if node.language == .c {
return
}
if node.is_union {
g.typedefs.writeln('typedef union $name $name;')
} else {
/*
attrs := if node.attrs.contains('packed') {
'__attribute__((__packed__))'
} else {
''
}
*/
g.typedefs.writeln('typedef struct $name $name;')
}
}
ast.TypeDecl {
if !g.pref.skip_unused {
g.writeln('// TypeDecl')
}
}
}
if !g.skip_stmt_pos { // && g.stmt_path_pos.len > 0 {
g.stmt_path_pos.delete_last()
}
// If we have temporary string exprs to free after this statement, do it. e.g.:
// `foo('a' + 'b')` => `tmp := 'a' + 'b'; foo(tmp); string_free(&tmp);`
if g.is_autofree {
// if node is ast.ExprStmt {&& node.expr is ast.CallExpr {
if node !is ast.FnDecl {
// p := node.pos()
// g.autofree_call_postgen(p.pos)
}
}
}
fn (mut g Gen) write_defer_stmts() {
for i := g.defer_stmts.len - 1; i >= 0; i-- {
defer_stmt := g.defer_stmts[i]
g.writeln('// Defer begin')
g.writeln('if (${g.defer_flag_var(defer_stmt)}) {')
g.indent++
if defer_stmt.ifdef.len > 0 {
g.writeln(defer_stmt.ifdef)
g.stmts(defer_stmt.stmts)
g.writeln('')
g.writeln('#endif')
} else {
g.indent--
g.stmts(defer_stmt.stmts)
g.indent++
}
g.indent--
g.writeln('}')
g.writeln('// Defer end')
}
}
struct SumtypeCastingFn {
fn_name string
got ast.Type
exp ast.Type
}
fn (mut g Gen) get_sumtype_casting_fn(got_ ast.Type, exp_ ast.Type) string {
got, exp := got_.idx(), exp_.idx()
i := got | int(u32(exp) << 16)
got_cname, exp_cname := g.table.sym(got).cname, g.table.sym(exp).cname
fn_name := '${got_cname}_to_sumtype_$exp_cname'
if got == exp || g.sumtype_definitions[i] {
return fn_name
}
g.sumtype_definitions[i] = true
g.sumtype_casting_fns << SumtypeCastingFn{
fn_name: fn_name
got: got
exp: exp
}
return fn_name
}
fn (mut g Gen) write_sumtype_casting_fn(fun SumtypeCastingFn) {
got, exp := fun.got, fun.exp
got_sym, exp_sym := g.table.sym(got), g.table.sym(exp)
got_cname, exp_cname := got_sym.cname, exp_sym.cname
mut sb := strings.new_builder(128)
sb.writeln('static inline $exp_cname ${fun.fn_name}($got_cname* x) {')
sb.writeln('\t$got_cname* ptr = memdup(x, sizeof($got_cname));')
for embed_hierarchy in g.table.get_embeds(got_sym) {
// last embed in the hierarchy
mut embed_cname := ''
mut embed_name := ''
mut accessor := '&x->'
for j, embed in embed_hierarchy {
embed_sym := g.table.sym(embed)
embed_cname = embed_sym.cname
embed_name = embed_sym.embed_name()
if j > 0 {
accessor += '.'
}
accessor += embed_name
}
// if the variable is not used, the C compiler will optimize it away
sb.writeln('\t$embed_cname* ${embed_name}_ptr = memdup($accessor, sizeof($embed_cname));')
}
sb.write_string('\treturn ($exp_cname){ ._$got_cname = ptr, ._typ = ${g.type_sidx(got)}')
for field in (exp_sym.info as ast.SumType).fields {
mut ptr := 'ptr'
mut type_cname := got_cname
_, embed_types := g.table.find_field_from_embeds(got_sym, field.name) or {
ast.StructField{}, []ast.Type{}
}
if embed_types.len > 0 {
embed_sym := g.table.sym(embed_types.last())
ptr = '${embed_sym.embed_name()}_ptr'
type_cname = embed_sym.cname
}
field_styp := g.typ(field.typ)
if got_sym.kind in [.sum_type, .interface_] {
// the field is already a wrapped pointer; we shouldn't wrap it once again
sb.write_string(', .$field.name = ptr->$field.name')
} else {
sb.write_string(', .$field.name = ($field_styp*)((char*)$ptr + __offsetof_ptr($ptr, $type_cname, $field.name))')
}
}
sb.writeln('};\n}')
g.auto_fn_definitions << sb.str()
}
fn (mut g Gen) call_cfn_for_casting_expr(fname string, expr ast.Expr, exp_is_ptr bool, exp_styp string, got_is_ptr bool, got_styp string) {
mut rparen_n := 1
if exp_is_ptr {
g.write('HEAP($exp_styp, ')
rparen_n++
}
g.write('${fname}(')
if !got_is_ptr {
if !expr.is_lvalue()
|| (expr is ast.Ident && (expr as ast.Ident).obj.is_simple_define_const()) {
// Note: the `_to_sumtype_` family of functions do call memdup internally, making
// another duplicate with the HEAP macro is redundant, so use ADDR instead:
promotion_macro_name := if fname.contains('_to_sumtype_') { 'ADDR' } else { 'HEAP' }
g.write('${promotion_macro_name}($got_styp, (')
rparen_n += 2
} else {
g.write('&')
}
}
g.expr(expr)
g.write(')'.repeat(rparen_n))
}
// use instead of expr() when you need to cast to a different type
fn (mut g Gen) expr_with_cast(expr ast.Expr, got_type_raw ast.Type, expected_type ast.Type) {
got_type := ast.mktyp(got_type_raw)
exp_sym := g.table.sym(expected_type)
got_sym := g.table.sym(got_type)
expected_is_ptr := expected_type.is_ptr()
got_is_ptr := got_type.is_ptr()
// allow using the new Error struct as a string, to avoid a breaking change
// TODO: temporary to allow people to migrate their code; remove soon
if got_type == ast.error_type_idx && expected_type == ast.string_type_idx {
g.write('(*(')
g.expr(expr)
g.write('.msg))')
return
}
if got_sym.kind == .none_ && exp_sym.idx == ast.error_type_idx {
g.expr(expr)
return
}
if exp_sym.info is ast.Interface && got_type.idx() != expected_type.idx()
&& !expected_type.has_flag(.optional) {
if expr is ast.StructInit && !got_type.is_ptr() {
g.inside_cast_in_heap++
got_styp := g.cc_type(got_type.ref(), true)
// TODO: why does cc_type even add this in the first place?
exp_styp := exp_sym.cname
mut fname := 'I_${got_styp}_to_Interface_$exp_styp'
if exp_sym.info.is_generic {
fname = g.generic_fn_name(exp_sym.info.concrete_types, fname, false)
}
g.call_cfn_for_casting_expr(fname, expr, expected_is_ptr, exp_styp, true,
got_styp)
g.inside_cast_in_heap--
} else {
got_styp := g.cc_type(got_type, true)
got_is_shared := got_type.has_flag(.shared_f)
exp_styp := if got_is_shared { '__shared__$exp_sym.cname' } else { exp_sym.cname }
// If it's shared, we need to use the other caster:
mut fname := if got_is_shared {
'I___shared__${got_styp}_to_shared_Interface_$exp_styp'
} else {
'I_${got_styp}_to_Interface_$exp_styp'
}
lock g.referenced_fns {
g.referenced_fns[fname] = true
}
fname = '/*$exp_sym*/$fname'
if exp_sym.info.is_generic {
fname = g.generic_fn_name(exp_sym.info.concrete_types, fname, false)
}
g.call_cfn_for_casting_expr(fname, expr, expected_is_ptr, exp_styp, got_is_ptr,
got_styp)
}
return
}
// cast to sum type
exp_styp := g.typ(expected_type)
got_styp := g.typ(got_type)
if expected_type != ast.void_type {
unwrapped_expected_type := g.unwrap_generic(expected_type)
unwrapped_exp_sym := g.table.sym(unwrapped_expected_type)
mut unwrapped_got_type := g.unwrap_generic(got_type)
mut unwrapped_got_sym := g.table.sym(unwrapped_got_type)
expected_deref_type := if expected_is_ptr {
unwrapped_expected_type.deref()
} else {
unwrapped_expected_type
}
got_deref_type := if got_is_ptr { unwrapped_got_type.deref() } else { unwrapped_got_type }
if g.table.sumtype_has_variant(expected_deref_type, got_deref_type, false) {
mut is_already_sum_type := false
scope := g.file.scope.innermost(expr.pos().pos)
if expr is ast.Ident {
if v := scope.find_var(expr.name) {
if v.smartcasts.len > 0 {
is_already_sum_type = true
}
}
} else if expr is ast.SelectorExpr {
if _ := scope.find_struct_field(expr.expr.str(), expr.expr_type, expr.field_name) {
is_already_sum_type = true
}
}
if is_already_sum_type && !g.inside_return {
// Don't create a new sum type wrapper if there is already one
g.prevent_sum_type_unwrapping_once = true
g.expr(expr)
} else {
if mut unwrapped_got_sym.info is ast.Aggregate {
unwrapped_got_type = unwrapped_got_sym.info.types[g.aggregate_type_idx]
unwrapped_got_sym = g.table.sym(unwrapped_got_type)
}
fname := g.get_sumtype_casting_fn(unwrapped_got_type, unwrapped_expected_type)
g.call_cfn_for_casting_expr(fname, expr, expected_is_ptr, unwrapped_exp_sym.cname,
got_is_ptr, got_styp)
}
return
}
}
// Generic dereferencing logic
neither_void := ast.voidptr_type !in [got_type, expected_type]
if expected_type.has_flag(.shared_f) && !got_type_raw.has_flag(.shared_f)
&& !expected_type.has_flag(.optional) {
shared_styp := exp_styp[0..exp_styp.len - 1] // `shared` implies ptr, so eat one `*`
if got_type_raw.is_ptr() {
g.error('cannot convert reference to `shared`', expr.pos())
}
if exp_sym.kind == .array {
g.writeln('($shared_styp*)__dup_shared_array(&($shared_styp){.mtx = {0}, .val =')
} else if exp_sym.kind == .map {
g.writeln('($shared_styp*)__dup_shared_map(&($shared_styp){.mtx = {0}, .val =')
} else {
g.writeln('($shared_styp*)__dup${shared_styp}(&($shared_styp){.mtx = {0}, .val =')
}
old_is_shared := g.is_shared
g.is_shared = false
g.expr(expr)
g.is_shared = old_is_shared
g.writeln('}, sizeof($shared_styp))')
return
} else if got_type_raw.has_flag(.shared_f) && !expected_type.has_flag(.shared_f) {
if expected_type.is_ptr() {
g.write('&')
}
g.expr(expr)
g.write('->val')
return
}
if got_is_ptr && !expected_is_ptr && neither_void && exp_sym.kind != .placeholder
&& expr !is ast.InfixExpr {
got_deref_type := got_type.deref()
deref_sym := g.table.sym(got_deref_type)
deref_will_match := expected_type in [got_type, got_deref_type, deref_sym.parent_idx]
got_is_opt := got_type.has_flag(.optional)
if deref_will_match || got_is_opt || expr.is_auto_deref_var()
|| expected_type.has_flag(.generic) {
g.write('*')
}
}
if expr is ast.IntegerLiteral {
if expected_type in [ast.u64_type, ast.u32_type, ast.u16_type] && expr.val[0] != `-` {
g.expr(expr)
g.write('U')
return
}
}
if exp_sym.kind == .function {
g.write('(voidptr)')
}
// no cast
g.expr(expr)
}
fn write_octal_escape(mut b strings.Builder, c u8) {
b << 92 // \
b << 48 + (c >> 6) // oct digit 2
b << 48 + (c >> 3) & 7 // oct digit 1
b << 48 + c & 7 // oct digit 0
}
fn cescape_nonascii(original string) string {
mut b := strings.new_builder(original.len)
for c in original {
if c < 32 || c > 126 {
// Encode with a 3 digit octal escape code, which has the
// advantage to be limited/non dependant on what character
// will follow next, unlike hex escapes:
write_octal_escape(mut b, c)
continue
}
b.write_u8(c)
}
res := b.str()
return res
}
// cestring returns a V string, properly escaped for embeddeding in a C string literal.
fn cestring(s string) string {
return s.replace('\\', '\\\\').replace('"', "'")
}
// ctoslit returns a '_SLIT("$s")' call, where s is properly escaped.
fn ctoslit(s string) string {
return '_SLIT("' + cescape_nonascii(cestring(s)) + '")'
}
fn (mut g Gen) gen_attrs(attrs []ast.Attr) {
if g.pref.skip_unused {
return
}
for attr in attrs {
g.writeln('// Attr: [$attr.name]')
}
}
fn (mut g Gen) gen_asm_stmt(stmt ast.AsmStmt) {
g.write('__asm__')
if stmt.is_volatile {
g.write(' volatile')
}
if stmt.is_goto {
g.write(' goto')
}
g.writeln(' (')
g.indent++
for template_tmp in stmt.templates {
mut template := template_tmp
g.write('"')
if template.is_directive {
g.write('.')
}
g.write(template.name)
if template.is_label {
g.write(':')
} else {
g.write(' ')
}
// swap destionation and operands for att syntax
if template.args.len != 0 && !template.is_directive {
template.args.prepend(template.args[template.args.len - 1])
template.args.delete(template.args.len - 1)
}
for i, arg in template.args {
if stmt.arch == .amd64 && (template.name == 'call' || template.name[0] == `j`)
&& arg is ast.AsmRegister {
g.write('*') // indirect branching
}
g.asm_arg(arg, stmt)
if i + 1 < template.args.len {
g.write(', ')
}
}
if !template.is_label {
g.write(';')
}
g.writeln('"')
}
if stmt.output.len != 0 || stmt.input.len != 0 || stmt.clobbered.len != 0 || stmt.is_goto {
g.write(': ')
}
g.gen_asm_ios(stmt.output)
if stmt.input.len != 0 || stmt.clobbered.len != 0 || stmt.is_goto {
g.write(': ')
}
g.gen_asm_ios(stmt.input)
if stmt.clobbered.len != 0 || stmt.is_goto {
g.write(': ')
}
for i, clob in stmt.clobbered {
g.write('"')
g.write(clob.reg.name)
g.write('"')
if i + 1 < stmt.clobbered.len {
g.writeln(',')
} else {
g.writeln('')
}
}
if stmt.is_goto {
g.write(': ')
}
for i, label in stmt.global_labels {
g.write(label)
if i + 1 < stmt.clobbered.len {
g.writeln(',')
} else {
g.writeln('')
}
}
g.indent--
g.writeln(');')
}
fn (mut g Gen) asm_arg(arg ast.AsmArg, stmt ast.AsmStmt) {
match arg {
ast.AsmAlias {
name := arg.name
if name in stmt.local_labels || name in stmt.global_labels
|| name in g.file.global_labels || stmt.is_basic
|| (name !in stmt.input.map(it.alias) && name !in stmt.output.map(it.alias)) {
asm_formatted_name := if name in stmt.global_labels { '%l[$name]' } else { name }
g.write(asm_formatted_name)
} else {
g.write('%[$name]')
}
}
ast.CharLiteral {
g.write("'$arg.val'")
}
ast.IntegerLiteral {
g.write('\$$arg.val')
}
ast.FloatLiteral {
if g.pref.nofloat {
g.write('\$$arg.val.int()')
} else {
g.write('\$$arg.val')
}
}
ast.BoolLiteral {
g.write('\$$arg.val.str()')
}
ast.AsmRegister {
if !stmt.is_basic {
g.write('%') // escape percent with percent in extended assembly
}
g.write('%$arg.name')
}
ast.AsmAddressing {
if arg.segment != '' {
g.write('%%$arg.segment:')
}
base := arg.base
index := arg.index
displacement := arg.displacement
scale := arg.scale
match arg.mode {
.base {
g.write('(')
g.asm_arg(base, stmt)
g.write(')')
}
.displacement {
g.asm_arg(displacement, stmt)
}
.base_plus_displacement {
g.asm_arg(displacement, stmt)
g.write('(')
g.asm_arg(base, stmt)
g.write(')')
}
.index_times_scale_plus_displacement {
if displacement is ast.AsmDisp {
g.asm_arg(displacement, stmt)
g.write('(, ')
} else if displacement is ast.AsmRegister {
g.write('(')
g.asm_arg(displacement, stmt)
g.write(',')
} else {
panic('unexpected $displacement.type_name()')
}
g.asm_arg(index, stmt)
g.write(',$scale)')
}
.base_plus_index_plus_displacement {
g.asm_arg(displacement, stmt)
g.write('(')
g.asm_arg(base, stmt)
g.write(',')
g.asm_arg(index, stmt)
g.write(',1)')
}
.base_plus_index_times_scale_plus_displacement {
g.asm_arg(displacement, stmt)
g.write('(')
g.asm_arg(base, stmt)
g.write(',')
g.asm_arg(index, stmt)
g.write(',$scale)')
}
.rip_plus_displacement {
g.asm_arg(displacement, stmt)
g.write('(')
g.asm_arg(base, stmt)
g.write(')')
}
.invalid {
g.error('invalid addressing mode', arg.pos)
}
}
}
ast.AsmDisp {
g.write(arg.val)
}
string {
g.write(arg)
}
}
}
fn (mut g Gen) gen_asm_ios(ios []ast.AsmIO) {
for i, io in ios {
if io.alias != '' {
g.write('[$io.alias] ')
}
g.write('"$io.constraint" (')
g.expr(io.expr)
g.write(')')
if i + 1 < ios.len {
g.writeln(',')
} else {
g.writeln('')
}
}
}
fn cnewlines(s string) string {
return s.replace('\n', r'\n')
}
fn (mut g Gen) write_fn_ptr_decl(func &ast.FnType, ptr_name string) {
ret_styp := g.typ(func.func.return_type)
g.write('$ret_styp (*$ptr_name) (')
arg_len := func.func.params.len
for i, arg in func.func.params {
arg_styp := g.typ(arg.typ)
g.write('$arg_styp $arg.name')
if i < arg_len - 1 {
g.write(', ')
}
}
g.write(')')
}
fn (mut g Gen) register_ternary_name(name string) {
level_key := g.inside_ternary.str()
if level_key !in g.ternary_level_names {
g.ternary_level_names[level_key] = []string{}
}
new_name := g.new_tmp_var()
g.ternary_names[name] = new_name
g.ternary_level_names[level_key] << name
}
fn (mut g Gen) get_ternary_name(name string) string {
if g.inside_ternary == 0 {
return name
}
if name !in g.ternary_names {
return name
}
return g.ternary_names[name]
}
fn (mut g Gen) gen_clone_assignment(val ast.Expr, typ ast.Type, add_eq bool) bool {
if val !is ast.Ident && val !is ast.SelectorExpr {
return false
}
right_sym := g.table.sym(typ)
if g.is_autofree {
if add_eq {
g.write('=')
}
if right_sym.kind == .array {
// `arr1 = arr2` => `arr1 = arr2.clone()`
shared_styp := g.typ(typ.set_nr_muls(0))
if typ.share() == .shared_t {
g.write('($shared_styp*)__dup_shared_array(&($shared_styp){.mtx = {0}, .val =')
}
g.write(' array_clone_static_to_depth(')
g.expr(val)
if typ.share() == .shared_t {
g.write('->val')
}
elem_type := (right_sym.info as ast.Array).elem_type
array_depth := g.get_array_depth(elem_type)
g.write(', $array_depth)')
if typ.share() == .shared_t {
g.write('}, sizeof($shared_styp))')
}
} else if right_sym.kind == .string {
// `str1 = str2` => `str1 = str2.clone()`
g.write(' string_clone_static(')
g.expr(val)
g.write(')')
}
}
return true
}
fn (mut g Gen) autofree_scope_vars(pos int, line_nr int, free_parent_scopes bool) {
g.autofree_scope_vars_stop(pos, line_nr, free_parent_scopes, -1)
}
fn (mut g Gen) autofree_scope_vars_stop(pos int, line_nr int, free_parent_scopes bool, stop_pos int) {
if g.is_builtin_mod {
// In `builtin` everything is freed manually.
return
}
if pos == -1 {
// TODO why can pos be -1?
return
}
// eprintln('> free_scope_vars($pos)')
scope := g.file.scope.innermost(pos)
if scope.start_pos == 0 {
// TODO why can scope.pos be 0? (only outside fns?)
return
}
g.trace_autofree('// autofree_scope_vars(pos=$pos line_nr=$line_nr scope.pos=$scope.start_pos scope.end_pos=$scope.end_pos)')
g.autofree_scope_vars2(scope, scope.start_pos, scope.end_pos, line_nr, free_parent_scopes,
stop_pos)
}
[if trace_autofree ?]
fn (mut g Gen) trace_autofree(line string) {
g.writeln(line)
}
// fn (mut g Gen) autofree_scope_vars2(scope &ast.Scope, end_pos int) {
fn (mut g Gen) autofree_scope_vars2(scope &ast.Scope, start_pos int, end_pos int, line_nr int, free_parent_scopes bool, stop_pos int) {
if isnil(scope) {
return
}
for _, obj in scope.objects {
match obj {
ast.Var {
g.trace_autofree('// var "$obj.name" var.pos=$obj.pos.pos var.line_nr=$obj.pos.line_nr')
if obj.name == g.returned_var_name {
g.trace_autofree('// skipping returned var')
continue
}
if obj.is_or {
// Skip vars inited with the `or {}`, since they are generated
// after the or block in C.
g.trace_autofree('// skipping `or{}` var "$obj.name"')
continue
}
if obj.is_tmp {
// Skip for loop vars
g.trace_autofree('// skipping tmp var "$obj.name"')
continue
}
if obj.is_inherited {
g.trace_autofree('// skipping inherited var "$obj.name"')
continue
}
// if var.typ == 0 {
// // TODO why 0?
// continue
// }
// if v.pos.pos > end_pos {
if obj.pos.pos > end_pos || (obj.pos.pos < start_pos && obj.pos.line_nr == line_nr) {
// Do not free vars that were declared after this scope
continue
}
is_optional := obj.typ.has_flag(.optional)
if is_optional {
// TODO: free optionals
continue
}
g.autofree_variable(obj)
}
else {}
}
}
for g.autofree_scope_stmts.len > 0 {
g.write(g.autofree_scope_stmts.pop())
}
// Free all vars in parent scopes as well:
// ```
// s := ...
// if ... {
// s.free()
// return
// }
// ```
// if !isnil(scope.parent) && line_nr > 0 {
if free_parent_scopes && !isnil(scope.parent) && !scope.detached_from_parent
&& (stop_pos == -1 || scope.parent.start_pos >= stop_pos) {
g.trace_autofree('// af parent scope:')
g.autofree_scope_vars2(scope.parent, start_pos, end_pos, line_nr, true, stop_pos)
}
}
fn (mut g Gen) autofree_variable(v ast.Var) {
sym := g.table.sym(v.typ)
// if v.name.contains('output2') {
if g.is_autofree {
// eprintln(' > var name: ${v.name:-20s} | is_arg: ${v.is_arg.str():6} | var type: ${int(v.typ):8} | type_name: ${sym.name:-33s}')
}
// }
free_fn := g.typ(v.typ.set_nr_muls(0)) + '_free'
if sym.kind == .array {
if sym.has_method('free') {
g.autofree_var_call(free_fn, v)
return
}
g.autofree_var_call('array_free', v)
return
}
if sym.kind == .string {
// Don't free simple string literals.
match v.expr {
ast.StringLiteral {
g.trace_autofree('// str literal')
}
else {
// NOTE/TODO: assign_stmt multi returns variables have no expr
// since the type comes from the called fns return type
/*
f := v.name[0]
if
//!(f >= `a` && f <= `d`) {
//f != `c` {
v.name!='cvar_name' {
t := typeof(v.expr)
return '// other ' + t + '\n'
}
*/
}
}
g.autofree_var_call('string_free', v)
return
}
if g.pref.experimental && v.typ.is_ptr() && sym.name.after('.')[0].is_capital() {
// Free user reference types
g.autofree_var_call('free', v)
}
if sym.has_method('free') {
g.autofree_var_call(free_fn, v)
}
}
fn (mut g Gen) autofree_var_call(free_fn_name string, v ast.Var) {
if v.is_arg {
// fn args should not be autofreed
return
}
if v.is_used && v.is_autofree_tmp {
// tmp expr vars do not need to be freed again here
return
}
if g.is_builtin_mod {
return
}
if !g.is_autofree {
return
}
// if v.is_autofree_tmp && !g.doing_autofree_tmp {
// return
// }
if v.name.contains('expr_write_string_1_') {
// TODO remove this temporary hack
return
}
mut af := strings.new_builder(128)
if v.typ.is_ptr() {
af.write_string('\t')
if v.typ.share() == .shared_t {
af.write_string(free_fn_name.replace_each(['__shared__', '']))
} else {
af.write_string(free_fn_name)
}
af.write_string('(')
if v.typ.share() == .shared_t {
af.write_string('&')
}
af.write_string(strings.repeat(`*`, v.typ.nr_muls() - 1)) // dereference if it is a pointer to a pointer
af.write_string(c_name(v.name))
if v.typ.share() == .shared_t {
af.write_string('->val')
}
af.writeln('); // autofreed ptr var')
} else {
if v.typ == ast.error_type && !v.is_autofree_tmp {
return
}
if v.is_auto_heap {
af.writeln('\t${free_fn_name}(${c_name(v.name)}); // autofreed heap var $g.cur_mod.name $g.is_builtin_mod')
} else {
af.writeln('\t${free_fn_name}(&${c_name(v.name)}); // autofreed var $g.cur_mod.name $g.is_builtin_mod')
}
}
g.autofree_scope_stmts << af.str()
}
fn (mut g Gen) map_fn_ptrs(key_typ ast.TypeSymbol) (string, string, string, string) {
mut hash_fn := ''
mut key_eq_fn := ''
mut clone_fn := ''
mut free_fn := '&map_free_nop'
match key_typ.kind {
.u8, .i8, .char {
hash_fn = '&map_hash_int_1'
key_eq_fn = '&map_eq_int_1'
clone_fn = '&map_clone_int_1'
}
.i16, .u16 {
hash_fn = '&map_hash_int_2'
key_eq_fn = '&map_eq_int_2'
clone_fn = '&map_clone_int_2'
}
.int, .u32, .rune, .f32, .enum_ {
hash_fn = '&map_hash_int_4'
key_eq_fn = '&map_eq_int_4'
clone_fn = '&map_clone_int_4'
}
.voidptr {
ts := if g.pref.m64 {
unsafe { g.table.sym_by_idx(ast.u64_type_idx) }
} else {
unsafe { g.table.sym_by_idx(ast.u32_type_idx) }
}
return g.map_fn_ptrs(ts)
}
.u64, .i64, .f64 {
hash_fn = '&map_hash_int_8'
key_eq_fn = '&map_eq_int_8'
clone_fn = '&map_clone_int_8'
}
.string {
hash_fn = '&map_hash_string'
key_eq_fn = '&map_eq_string'
clone_fn = '&map_clone_string'
free_fn = '&map_free_string'
}
else {
verror('map key type not supported')
}
}
return hash_fn, key_eq_fn, clone_fn, free_fn
}
fn (mut g Gen) expr(node_ ast.Expr) {
// println('cgen expr() line_nr=$node.pos.line_nr')
old_discard_or_result := g.discard_or_result
old_is_void_expr_stmt := g.is_void_expr_stmt
if g.is_void_expr_stmt {
g.discard_or_result = true
g.is_void_expr_stmt = false
} else {
g.discard_or_result = false
}
// Note: please keep the type names in the match here in alphabetical order:
mut node := unsafe { node_ }
match mut node {
ast.ComptimeType {
g.error('g.expr(): Unhandled ComptimeType', node.pos)
}
ast.EmptyExpr {
g.error('g.expr(): unhandled EmptyExpr', token.Pos{})
}
ast.AnonFn {
g.gen_anon_fn(mut node)
}
ast.ArrayDecompose {
g.expr(node.expr)
}
ast.ArrayInit {
g.array_init(node, '')
}
ast.AsCast {
g.as_cast(node)
}
ast.Assoc {
g.assoc(node)
}
ast.AtExpr {
g.comptime_at(node)
}
ast.BoolLiteral {
g.write(node.val.str())
}
ast.CallExpr {
// if g.fileis('1.strings') {
// println('\ncall_expr()()')
// }
ret_type := if node.or_block.kind == .absent {
node.return_type
} else {
node.return_type.clear_flag(.optional)
}
mut shared_styp := ''
if g.is_shared && !ret_type.has_flag(.shared_f) {
ret_sym := g.table.sym(ret_type)
shared_typ := ret_type.set_flag(.shared_f)
shared_styp = g.typ(shared_typ)
if ret_sym.kind == .array {
g.writeln('($shared_styp*)__dup_shared_array(&($shared_styp){.mtx = {0}, .val =')
} else if ret_sym.kind == .map {
g.writeln('($shared_styp*)__dup_shared_map(&($shared_styp){.mtx = {0}, .val =')
} else {
g.writeln('($shared_styp*)__dup${shared_styp}(&($shared_styp){.mtx = {0}, .val =')
}
}
last_stmt_pos := if g.stmt_path_pos.len > 0 { g.stmt_path_pos.last() } else { 0 }
g.call_expr(node)
// if g.fileis('1.strings') {
// println('before:' + node.autofree_pregen)
// }
if g.is_autofree && !g.is_builtin_mod && !g.is_js_call && g.strs_to_free0.len == 0
&& !g.inside_lambda { // && g.inside_ternary ==
// if len != 0, that means we are handling call expr inside call expr (arg)
// and it'll get messed up here, since it's handled recursively in autofree_call_pregen()
// so just skip it
g.autofree_call_pregen(node)
if g.strs_to_free0.len > 0 {
g.insert_at(last_stmt_pos, g.strs_to_free0.join('\n') + '/* inserted before */')
}
g.strs_to_free0 = []
// println('pos=$node.pos.pos')
}
if g.is_shared && !ret_type.has_flag(.shared_f) {
g.writeln('}, sizeof($shared_styp))')
}
// if g.autofree && node.autofree_pregen != '' { // g.strs_to_free0.len != 0 {
/*
if g.autofree {
s := g.autofree_pregen[node.pos.pos.str()]
if s != '' {
// g.insert_before_stmt('/*START2*/' + g.strs_to_free0.join('\n') + '/*END*/')
// g.insert_before_stmt('/*START3*/' + node.autofree_pregen + '/*END*/')
g.insert_before_stmt('/*START3*/' + s + '/*END*/')
// for s in g.strs_to_free0 {
}
// //g.writeln(s)
// }
g.strs_to_free0 = []
}
*/
}
ast.CastExpr {
g.cast_expr(node)
}
ast.ChanInit {
elem_typ_str := g.typ(node.elem_type)
noscan := g.check_noscan(node.elem_type)
g.write('sync__new_channel_st${noscan}(')
if node.has_cap {
g.expr(node.cap_expr)
} else {
g.write('0')
}
g.write(', sizeof(')
g.write(elem_typ_str)
g.write('))')
}
ast.CharLiteral {
g.char_literal(node)
}
ast.Comment {}
ast.ComptimeCall {
g.comptime_call(mut node)
}
ast.ComptimeSelector {
g.comptime_selector(node)
}
ast.ConcatExpr {
g.concat_expr(node)
}
ast.CTempVar {
// g.write('/*ctmp .orig: $node.orig.str() , ._typ: $node.typ, .is_ptr: $node.is_ptr */ ')
g.write(node.name)
}
ast.DumpExpr {
g.dump_expr(node)
}
ast.EnumVal {
g.enum_val(node)
}
ast.FloatLiteral {
if g.pref.nofloat {
g.write(node.val.int().str())
} else {
g.write(node.val)
}
}
ast.GoExpr {
g.go_expr(node)
}
ast.Ident {
g.ident(node)
}
ast.IfExpr {
g.if_expr(node)
}
ast.IfGuardExpr {
g.write('/* guard */')
}
ast.IndexExpr {
g.index_expr(node)
}
ast.InfixExpr {
if node.op in [.left_shift, .plus_assign, .minus_assign] {
g.inside_map_infix = true
g.infix_expr(node)
g.inside_map_infix = false
} else {
g.infix_expr(node)
}
}
ast.IntegerLiteral {
if node.val.starts_with('0o') {
g.write('0')
g.write(node.val[2..])
} else if node.val.starts_with('-0o') {
g.write('-0')
g.write(node.val[3..])
} else {
g.write(node.val) // .int().str())
}
}
ast.IsRefType {
typ := if node.typ == g.field_data_type {
g.comptime_for_field_value.typ
} else {
node.typ
}
node_typ := g.unwrap_generic(typ)
sym := g.table.sym(node_typ)
if sym.language == .v && sym.kind in [.placeholder, .any] {
g.error('unknown type `$sym.name`', node.pos)
}
is_ref_type := g.contains_ptr(node_typ)
g.write('/*IsRefType*/ $is_ref_type')
}
ast.Likely {
if node.is_likely {
g.write('_likely_')
} else {
g.write('_unlikely_')
}
g.write('(')
g.expr(node.expr)
g.write(')')
}
ast.LockExpr {
g.lock_expr(node)
}
ast.MapInit {
g.map_init(node)
}
ast.MatchExpr {
g.match_expr(node)
}
ast.NodeError {}
ast.None {
g.write('_const_none__')
}
ast.OffsetOf {
styp := g.typ(node.struct_type)
g.write('/*OffsetOf*/ (u32)(__offsetof(${util.no_dots(styp)}, $node.field))')
}
ast.OrExpr {
// this should never appear here
}
ast.ParExpr {
g.write('(')
g.expr(node.expr)
g.write(')')
}
ast.PostfixExpr {
if node.auto_locked != '' {
g.writeln('sync__RwMutex_lock(&$node.auto_locked->mtx);')
}
g.inside_map_postfix = true
if node.expr.is_auto_deref_var() {
g.write('(*')
g.expr(node.expr)
g.write(')')
} else {
g.expr(node.expr)
}
g.inside_map_postfix = false
g.write(node.op.str())
if node.auto_locked != '' {
g.writeln(';')
g.write('sync__RwMutex_unlock(&$node.auto_locked->mtx)')
}
}
ast.PrefixExpr {
gen_or := node.op == .arrow && (node.or_block.kind != .absent || node.is_option)
if node.op == .amp {
g.is_amp = true
}
if node.op == .arrow {
styp := g.typ(node.right_type)
right_sym := g.table.sym(node.right_type)
mut right_inf := right_sym.info as ast.Chan
elem_type := right_inf.elem_type
is_gen_or_and_assign_rhs := gen_or && !g.discard_or_result
cur_line := if is_gen_or_and_assign_rhs {
line := g.go_before_stmt(0)
g.out.write_string(util.tabs(g.indent))
line
} else {
''
}
tmp_opt := if gen_or { g.new_tmp_var() } else { '' }
if gen_or {
opt_elem_type := g.typ(elem_type.set_flag(.optional))
g.register_chan_pop_optional_call(opt_elem_type, styp)
g.write('$opt_elem_type $tmp_opt = __Option_${styp}_popval(')
} else {
g.write('__${styp}_popval(')
}
g.expr(node.right)
g.write(')')
if gen_or {
if !node.is_option {
g.or_block(tmp_opt, node.or_block, elem_type)
}
if is_gen_or_and_assign_rhs {
elem_styp := g.typ(elem_type)
g.write(';\n$cur_line*($elem_styp*)${tmp_opt}.data')
}
}
} else {
// g.write('/*pref*/')
if !(g.is_amp && node.right.is_auto_deref_var()) {
g.write(node.op.str())
}
// g.write('(')
g.expr(node.right)
}
g.is_amp = false
}
ast.RangeExpr {
// Only used in IndexExpr
}
ast.SelectExpr {
g.select_expr(node)
}
ast.SelectorExpr {
g.selector_expr(node)
}
ast.SizeOf {
g.size_of(node)
}
ast.SqlExpr {
g.sql_select_expr(node)
}
ast.StringLiteral {
g.string_literal(node)
}
ast.StringInterLiteral {
g.string_inter_literal(node)
}
ast.StructInit {
if node.unresolved {
g.expr(ast.resolve_init(node, g.unwrap_generic(node.typ), g.table))
} else {
// `user := User{name: 'Bob'}`
g.inside_struct_init = true
g.struct_init(node)
g.inside_struct_init = false
}
}
ast.TypeNode {
// match sum Type
// g.write('/* Type */')
// type_idx := node.typ.idx()
typ := g.unwrap_generic(node.typ)
sym := g.table.sym(typ)
sidx := g.type_sidx(typ)
// g.write('$type_idx /* $sym.name */')
g.write('$sidx /* $sym.name */')
}
ast.TypeOf {
g.typeof_expr(node)
}
ast.UnsafeExpr {
g.expr(node.expr)
}
}
g.discard_or_result = old_discard_or_result
g.is_void_expr_stmt = old_is_void_expr_stmt
}
fn (mut g Gen) char_literal(node ast.CharLiteral) {
if node.val == r'\`' {
g.write("'`'")
return
}
// TODO: optimize use L-char instead of u32 when possible
if node.val.len_utf8() < node.val.len {
g.write('((rune)0x$node.val.utf32_code().hex() /* `$node.val` */)')
return
}
if node.val.len == 1 {
clit := node.val[0]
if clit < 32 || clit == 92 || clit > 126 {
g.write("'")
write_octal_escape(mut g.out, clit)
g.write("'")
return
}
}
g.write("'$node.val'")
}
// T.name, typeof(expr).name
fn (mut g Gen) type_name(raw_type ast.Type) {
typ := if raw_type == g.field_data_type { g.comptime_for_field_value.typ } else { raw_type }
sym := g.table.sym(typ)
mut s := ''
if sym.kind == .function {
if typ.is_ptr() {
s = '&' + g.fn_decl_str(sym.info as ast.FnType)
} else {
s = g.fn_decl_str(sym.info as ast.FnType)
}
} else {
s = g.table.type_to_str(g.unwrap_generic(typ))
}
g.write('_SLIT("${util.strip_main_name(s)}")')
}
fn (mut g Gen) typeof_expr(node ast.TypeOf) {
typ := if node.expr_type == g.field_data_type {
g.comptime_for_field_value.typ
} else {
node.expr_type
}
sym := g.table.sym(typ)
if sym.kind == .sum_type {
// When encountering a .sum_type, typeof() should be done at runtime,
// because the subtype of the expression may change:
g.write('charptr_vstring_literal( /* $sym.name */ v_typeof_sumtype_${sym.cname}( (')
g.expr(node.expr)
g.write(')._typ ))')
} else if sym.kind == .array_fixed {
fixed_info := sym.info as ast.ArrayFixed
typ_name := g.table.get_type_name(fixed_info.elem_type)
g.write('_SLIT("[$fixed_info.size]${util.strip_main_name(typ_name)}")')
} else if sym.kind == .function {
info := sym.info as ast.FnType
g.write('_SLIT("${g.fn_decl_str(info)}")')
} else if typ.has_flag(.variadic) {
varg_elem_type_sym := g.table.sym(g.table.value_type(typ))
g.write('_SLIT("...${util.strip_main_name(varg_elem_type_sym.name)}")')
} else {
x := g.table.type_to_str(typ)
y := util.strip_main_name(x)
g.write('_SLIT("$y")')
}
}
fn (mut g Gen) selector_expr(node ast.SelectorExpr) {
prevent_sum_type_unwrapping_once := g.prevent_sum_type_unwrapping_once
g.prevent_sum_type_unwrapping_once = false
if node.name_type > 0 {
match node.gkind_field {
.name {
g.type_name(node.name_type)
return
}
.typ {
g.write(int(g.unwrap_generic(node.name_type)).str())
return
}
.unknown {
if node.field_name == 'name' {
// typeof(expr).name
mut name_type := node.name_type
if node.expr is ast.TypeOf {
if node.expr.expr is ast.ComptimeSelector {
if node.expr.expr.field_expr is ast.SelectorExpr {
if node.expr.expr.field_expr.expr is ast.Ident {
key_str := '${node.expr.expr.field_expr.expr.name}.typ'
name_type = g.comptime_var_type_map[key_str] or { name_type }
}
}
}
}
g.type_name(name_type)
return
} else if node.field_name == 'idx' {
// typeof(expr).idx
g.write(int(g.unwrap_generic(node.name_type)).str())
return
}
g.error('unknown generic field', node.pos)
}
}
}
if node.expr_type == 0 {
g.checker_bug('unexpected SelectorExpr.expr_type = 0', node.pos)
}
sym := g.table.sym(g.unwrap_generic(node.expr_type))
// if node expr is a root ident and an optional
mut is_optional := node.expr is ast.Ident && node.expr_type.has_flag(.optional)
if is_optional {
opt_base_typ := g.base_type(node.expr_type)
g.writeln('(*($opt_base_typ*)')
}
if sym.kind in [.interface_, .sum_type] {
g.write('(*(')
}
if sym.kind == .array_fixed {
if node.field_name != 'len' {
g.error('field_name should be `len`', node.pos)
}
info := sym.info as ast.ArrayFixed
g.write('$info.size')
return
} else if sym.kind == .chan && (node.field_name == 'len' || node.field_name == 'closed') {
g.write('sync__Channel_${node.field_name}(')
g.expr(node.expr)
g.write(')')
return
}
mut sum_type_deref_field := ''
mut sum_type_dot := '.'
if f := g.table.find_field(sym, node.field_name) {
field_sym := g.table.sym(f.typ)
if field_sym.kind in [.sum_type, .interface_] {
if !prevent_sum_type_unwrapping_once {
// check first if field is sum type because scope searching is expensive
scope := g.file.scope.innermost(node.pos.pos)
if field := scope.find_struct_field(node.expr.str(), node.expr_type, node.field_name) {
if field.orig_type.is_ptr() {
sum_type_dot = '->'
}
for i, typ in field.smartcasts {
g.write('(')
if field_sym.kind == .sum_type {
g.write('*')
}
cast_sym := g.table.sym(g.unwrap_generic(typ))
if i != 0 {
dot := if field.typ.is_ptr() { '->' } else { '.' }
sum_type_deref_field += ')$dot'
}
if cast_sym.info is ast.Aggregate {
agg_sym := g.table.sym(cast_sym.info.types[g.aggregate_type_idx])
sum_type_deref_field += '_$agg_sym.cname'
} else {
sum_type_deref_field += '_$cast_sym.cname'
}
}
}
}
}
} else if m := g.table.find_method(sym, node.field_name) {
mut has_embeds := false
if sym.info in [ast.Struct, ast.Aggregate] {
if node.from_embed_types.len > 0 {
has_embeds = true
}
}
if !has_embeds {
if !node.has_hidden_receiver {
g.write('${g.typ(node.expr_type.idx())}_$m.name')
return
}
receiver := m.params[0]
expr_styp := g.typ(node.expr_type.idx())
data_styp := g.typ(receiver.typ.idx())
mut sb := strings.new_builder(256)
name := '_V_closure_${expr_styp}_${m.name}_$node.pos.pos'
sb.write_string('${g.typ(m.return_type)} ${name}(')
for i in 1 .. m.params.len {
param := m.params[i]
if i != 1 {
sb.write_string(', ')
}
sb.write_string('${g.typ(param.typ)} a$i')
}
sb.writeln(') {')
sb.writeln('\t$data_styp* a0 = __CLOSURE_GET_DATA();')
if m.return_type != ast.void_type {
sb.write_string('\treturn ')
} else {
sb.write_string('\t')
}
sb.write_string('${expr_styp}_${m.name}(')
if !receiver.typ.is_ptr() {
sb.write_string('*')
}
for i in 0 .. m.params.len {
if i != 0 {
sb.write_string(', ')
}
sb.write_string('a$i')
}
sb.writeln(');')
sb.writeln('}')
g.anon_fn_definitions << sb.str()
g.nr_closures++
g.write('__closure_create($name, ')
if !receiver.typ.is_ptr() {
g.write('memdup(')
}
if !node.expr_type.is_ptr() {
g.write('&')
}
g.expr(node.expr)
if !receiver.typ.is_ptr() {
g.write(', sizeof($expr_styp))')
}
g.write(')')
return
}
}
n_ptr := node.expr_type.nr_muls() - 1
if n_ptr > 0 {
g.write('(')
g.write('*'.repeat(n_ptr))
g.expr(node.expr)
g.write(')')
} else {
g.expr(node.expr)
}
if is_optional {
g.write('.data)')
}
// struct embedding
if sym.info in [ast.Struct, ast.Aggregate] {
for i, embed in node.from_embed_types {
embed_sym := g.table.sym(embed)
embed_name := embed_sym.embed_name()
is_left_ptr := if i == 0 {
node.expr_type.is_ptr()
} else {
node.from_embed_types[i - 1].is_ptr()
}
if is_left_ptr {
g.write('->')
} else {
g.write('.')
}
g.write(embed_name)
}
}
if (node.expr_type.is_ptr() || sym.kind == .chan) && node.from_embed_types.len == 0 {
g.write('->')
} else {
// g.write('. /*typ= $it.expr_type */') // ${g.typ(it.expr_type)} /')
g.write('.')
}
if node.expr_type.has_flag(.shared_f) {
g.write('val.')
}
if node.expr_type == 0 {
verror('cgen: SelectorExpr | expr_type: 0 | it.expr: `$node.expr` | field: `$node.field_name` | file: $g.file.path | line: $node.pos.line_nr')
}
field_name := if sym.language == .v { c_name(node.field_name) } else { node.field_name }
g.write(field_name)
if sum_type_deref_field != '' {
g.write('$sum_type_dot$sum_type_deref_field)')
}
if sym.kind in [.interface_, .sum_type] {
g.write('))')
}
}
fn (mut g Gen) enum_decl(node ast.EnumDecl) {
enum_name := util.no_dots(node.name)
is_flag := node.is_flag
g.enum_typedefs.writeln('typedef enum {')
mut cur_enum_expr := ''
mut cur_enum_offset := 0
for i, field in node.fields {
g.enum_typedefs.write_string('\t${enum_name}__$field.name')
if field.has_expr {
g.enum_typedefs.write_string(' = ')
expr_str := g.expr_string(field.expr)
g.enum_typedefs.write_string(expr_str)
cur_enum_expr = expr_str
cur_enum_offset = 0
} else if is_flag {
g.enum_typedefs.write_string(' = ')
cur_enum_expr = '1 << $i'
g.enum_typedefs.write_string((1 << i).str())
cur_enum_offset = 0
}
cur_value := if cur_enum_offset > 0 {
'$cur_enum_expr+$cur_enum_offset'
} else {
cur_enum_expr
}
g.enum_typedefs.writeln(', // $cur_value')
cur_enum_offset++
}
g.enum_typedefs.writeln('} $enum_name;\n')
}
fn (mut g Gen) enum_expr(node ast.Expr) {
match node {
ast.EnumVal {
g.write(node.val)
}
else {
g.expr(node)
}
}
}
fn (mut g Gen) lock_expr(node ast.LockExpr) {
g.cur_lock = unsafe { node } // is ok because it is discarded at end of fn
defer {
g.cur_lock = ast.LockExpr{
scope: 0
}
}
tmp_result := if node.is_expr { g.new_tmp_var() } else { '' }
mut cur_line := ''
if node.is_expr {
styp := g.typ(node.typ)
cur_line = g.go_before_stmt(0)
g.writeln('$styp $tmp_result;')
}
mut mtxs := ''
if node.lockeds.len == 0 {
// this should not happen
} else if node.lockeds.len == 1 {
lock_prefix := if node.is_rlock[0] { 'r' } else { '' }
g.write('sync__RwMutex_${lock_prefix}lock(&')
g.expr(node.lockeds[0])
g.writeln('->mtx);')
} else {
mtxs = g.new_tmp_var()
g.writeln('uintptr_t _arr_$mtxs[$node.lockeds.len];')
g.writeln('bool _isrlck_$mtxs[$node.lockeds.len];')
mut j := 0
for i, is_rlock in node.is_rlock {
if !is_rlock {
g.write('_arr_$mtxs[$j] = (uintptr_t)&')
g.expr(node.lockeds[i])
g.writeln('->mtx;')
g.writeln('_isrlck_$mtxs[$j] = false;')
j++
}
}
for i, is_rlock in node.is_rlock {
if is_rlock {
g.write('_arr_$mtxs[$j] = (uintptr_t)&')
g.expr(node.lockeds[i])
g.writeln('->mtx;')
g.writeln('_isrlck_$mtxs[$j] = true;')
j++
}
}
if node.lockeds.len == 2 {
g.writeln('if (_arr_$mtxs[0] > _arr_$mtxs[1]) {')
g.writeln('\tuintptr_t _ptr_$mtxs = _arr_$mtxs[0];')
g.writeln('\t_arr_$mtxs[0] = _arr_$mtxs[1];')
g.writeln('\t_arr_$mtxs[1] = _ptr_$mtxs;')
g.writeln('\tbool _bool_$mtxs = _isrlck_$mtxs[0];')
g.writeln('\t_isrlck_$mtxs[0] = _isrlck_$mtxs[1];')
g.writeln('\t_isrlck_$mtxs[1] = _bool_$mtxs;')
g.writeln('}')
} else {
g.writeln('__sort_ptr(_arr_$mtxs, _isrlck_$mtxs, $node.lockeds.len);')
}
g.writeln('for (int $mtxs=0; $mtxs<$node.lockeds.len; $mtxs++) {')
g.writeln('\tif ($mtxs && _arr_$mtxs[$mtxs] == _arr_$mtxs[$mtxs-1]) continue;')
g.writeln('\tif (_isrlck_$mtxs[$mtxs])')
g.writeln('\t\tsync__RwMutex_rlock((sync__RwMutex*)_arr_$mtxs[$mtxs]);')
g.writeln('\telse')
g.writeln('\t\tsync__RwMutex_lock((sync__RwMutex*)_arr_$mtxs[$mtxs]);')
g.writeln('}')
}
g.mtxs = mtxs
defer {
g.mtxs = ''
}
g.writeln('/*lock*/ {')
g.stmts_with_tmp_var(node.stmts, tmp_result)
if node.is_expr {
g.writeln(';')
}
g.writeln('}')
g.unlock_locks()
if node.is_expr {
g.writeln('')
g.write(cur_line)
g.write('$tmp_result')
}
}
fn (mut g Gen) unlock_locks() {
if g.cur_lock.lockeds.len == 0 {
} else if g.cur_lock.lockeds.len == 1 {
lock_prefix := if g.cur_lock.is_rlock[0] { 'r' } else { '' }
g.write('sync__RwMutex_${lock_prefix}unlock(&')
g.expr(g.cur_lock.lockeds[0])
g.write('->mtx);')
} else {
g.writeln('for (int $g.mtxs=${g.cur_lock.lockeds.len - 1}; $g.mtxs>=0; $g.mtxs--) {')
g.writeln('\tif ($g.mtxs && _arr_$g.mtxs[$g.mtxs] == _arr_$g.mtxs[$g.mtxs-1]) continue;')
g.writeln('\tif (_isrlck_$g.mtxs[$g.mtxs])')
g.writeln('\t\tsync__RwMutex_runlock((sync__RwMutex*)_arr_$g.mtxs[$g.mtxs]);')
g.writeln('\telse')
g.writeln('\t\tsync__RwMutex_unlock((sync__RwMutex*)_arr_$g.mtxs[$g.mtxs]);')
g.write('}')
}
}
fn (mut g Gen) map_init(node ast.MapInit) {
unwrap_key_typ := g.unwrap_generic(node.key_type)
unwrap_val_typ := g.unwrap_generic(node.value_type)
key_typ_str := g.typ(unwrap_key_typ)
value_typ_str := g.typ(unwrap_val_typ)
value_sym := g.table.sym(unwrap_val_typ)
key_sym := g.table.final_sym(unwrap_key_typ)
hash_fn, key_eq_fn, clone_fn, free_fn := g.map_fn_ptrs(key_sym)
size := node.vals.len
mut shared_styp := '' // only needed for shared &[]{...}
mut styp := ''
is_amp := g.is_amp
g.is_amp = false
if is_amp {
g.out.go_back(1) // delete the `&` already generated in `prefix_expr()
}
if g.is_shared {
mut shared_typ := node.typ.set_flag(.shared_f)
shared_styp = g.typ(shared_typ)
g.writeln('($shared_styp*)__dup_shared_map(&($shared_styp){.mtx = {0}, .val =')
} else if is_amp {
styp = g.typ(node.typ)
g.write('($styp*)memdup(ADDR($styp, ')
}
noscan_key := g.check_noscan(node.key_type)
noscan_value := g.check_noscan(node.value_type)
mut noscan := if noscan_key.len != 0 || noscan_value.len != 0 { '_noscan' } else { '' }
if noscan.len != 0 {
if noscan_key.len != 0 {
noscan += '_key'
}
if noscan_value.len != 0 {
noscan += '_value'
}
}
if size > 0 {
if value_sym.kind == .function {
g.writeln('new_map_init${noscan}($hash_fn, $key_eq_fn, $clone_fn, $free_fn, $size, sizeof($key_typ_str), sizeof(voidptr),')
} else {
g.writeln('new_map_init${noscan}($hash_fn, $key_eq_fn, $clone_fn, $free_fn, $size, sizeof($key_typ_str), sizeof($value_typ_str),')
}
g.writeln('\t\t_MOV(($key_typ_str[$size]){')
for expr in node.keys {
g.write('\t\t\t')
g.expr(expr)
g.writeln(', ')
}
g.writeln('\t\t}),')
if value_sym.kind == .function {
g.writeln('\t\t_MOV((voidptr[$size]){')
} else {
g.writeln('\t\t_MOV(($value_typ_str[$size]){')
}
for i, expr in node.vals {
g.write('\t\t\t')
if expr.is_auto_deref_var() {
g.write('*')
}
if value_sym.kind == .sum_type {
g.expr_with_cast(expr, node.val_types[i], unwrap_val_typ)
} else {
g.expr(expr)
}
g.writeln(', ')
}
g.writeln('\t\t})')
g.writeln('\t)')
} else {
g.write('new_map${noscan}(sizeof($key_typ_str), sizeof($value_typ_str), $hash_fn, $key_eq_fn, $clone_fn, $free_fn)')
}
g.writeln('')
if g.is_shared {
g.write('}, sizeof($shared_styp))')
} else if is_amp {
g.write('), sizeof($styp))')
}
}
fn (mut g Gen) select_expr(node ast.SelectExpr) {
is_expr := node.is_expr || g.inside_ternary > 0
cur_line := if is_expr {
g.empty_line = true
g.go_before_stmt(0)
} else {
''
}
n_channels := if node.has_exception { node.branches.len - 1 } else { node.branches.len }
mut channels := []ast.Expr{cap: n_channels}
mut objs := []ast.Expr{cap: n_channels}
mut tmp_objs := []string{cap: n_channels}
mut elem_types := []string{cap: n_channels}
mut is_push := []bool{cap: n_channels}
mut has_else := false
mut has_timeout := false
mut timeout_expr := ast.empty_expr()
mut exception_branch := -1
for j, branch in node.branches {
if branch.is_else {
has_else = true
exception_branch = j
} else if branch.is_timeout {
has_timeout = true
exception_branch = j
timeout_expr = (branch.stmt as ast.ExprStmt).expr
} else {
match branch.stmt {
ast.ExprStmt {
// send expression
expr := branch.stmt.expr as ast.InfixExpr
channels << expr.left
if expr.right in [ast.Ident, ast.IndexExpr, ast.SelectorExpr, ast.StructInit] {
// addressable objects in the `C` output
objs << expr.right
tmp_objs << ''
elem_types << ''
} else {
// must be evaluated to tmp var before real `select` is performed
objs << ast.empty_expr()
tmp_obj := g.new_tmp_var()
tmp_objs << tmp_obj
el_stype := g.typ(ast.mktyp(expr.right_type))
g.writeln('$el_stype $tmp_obj;')
}
is_push << true
}
ast.AssignStmt {
rec_expr := branch.stmt.right[0] as ast.PrefixExpr
channels << rec_expr.right
is_push << false
// create tmp unless the object with *exactly* the type we need exists already
if branch.stmt.op == .decl_assign
|| branch.stmt.right_types[0] != branch.stmt.left_types[0] {
tmp_obj := g.new_tmp_var()
tmp_objs << tmp_obj
el_stype := g.typ(branch.stmt.right_types[0])
elem_types << if branch.stmt.op == .decl_assign {
el_stype + ' '
} else {
''
}
g.writeln('$el_stype $tmp_obj;')
} else {
tmp_objs << ''
elem_types << ''
}
objs << branch.stmt.left[0]
}
else {}
}
}
}
chan_array := g.new_tmp_var()
g.write('Array_sync__Channel_ptr $chan_array = new_array_from_c_array($n_channels, $n_channels, sizeof(sync__Channel*), _MOV((sync__Channel*[$n_channels]){')
for i in 0 .. n_channels {
if i > 0 {
g.write(', ')
}
g.write('(sync__Channel*)(')
g.expr(channels[i])
g.write(')')
}
g.writeln('}));\n')
directions_array := g.new_tmp_var()
g.write('Array_sync__Direction $directions_array = new_array_from_c_array($n_channels, $n_channels, sizeof(sync__Direction), _MOV((sync__Direction[$n_channels]){')
for i in 0 .. n_channels {
if i > 0 {
g.write(', ')
}
if is_push[i] {
g.write('sync__Direction__push')
} else {
g.write('sync__Direction__pop')
}
}
g.writeln('}));\n')
objs_array := g.new_tmp_var()
g.write('Array_voidptr $objs_array = new_array_from_c_array($n_channels, $n_channels, sizeof(voidptr), _MOV((voidptr[$n_channels]){')
for i in 0 .. n_channels {
if i > 0 {
g.write(', &')
} else {
g.write('&')
}
if tmp_objs[i] == '' {
g.expr(objs[i])
} else {
g.write(tmp_objs[i])
}
}
g.writeln('}));\n')
select_result := g.new_tmp_var()
g.write('int $select_result = sync__channel_select(&/*arr*/$chan_array, $directions_array, &/*arr*/$objs_array, ')
if has_timeout {
g.expr(timeout_expr)
} else if has_else {
g.write('0')
} else {
g.write('_const_time__infinite')
}
g.writeln(');')
// free the temps that were created
g.writeln('array_free(&$objs_array);')
g.writeln('array_free(&$directions_array);')
g.writeln('array_free(&$chan_array);')
mut i := 0
for j in 0 .. node.branches.len {
if j > 0 {
g.write('} else ')
}
g.write('if ($select_result == ')
if j == exception_branch {
g.writeln('-1) {')
} else {
g.writeln('$i) {')
if !is_push[i] && tmp_objs[i] != '' {
g.write('\t${elem_types[i]}')
g.expr(objs[i])
g.writeln(' = ${tmp_objs[i]};')
}
i++
}
g.stmts(node.branches[j].stmts)
}
g.writeln('}')
if is_expr {
g.empty_line = false
g.write(cur_line)
g.write('($select_result != -2)')
}
}
fn (mut g Gen) ident(node ast.Ident) {
prevent_sum_type_unwrapping_once := g.prevent_sum_type_unwrapping_once
g.prevent_sum_type_unwrapping_once = false
if node.name == 'lld' {
return
}
if node.name.starts_with('C.') {
g.write(util.no_dots(node.name[2..]))
return
}
mut name := c_name(node.name)
if node.kind == .constant { // && !node.name.starts_with('g_') {
if g.pref.translated && !g.is_builtin_mod
&& !util.module_is_builtin(node.name.all_before_last('.')) {
// Don't prepend "_const" to translated C consts,
// but only in user code, continue prepending "_const" to builtin consts.
mut x := util.no_dots(node.name)
if x.starts_with('main__') {
x = x['main__'.len..]
}
g.write(x)
return
} else {
// TODO globals hack
g.write('_const_')
}
}
// TODO: temporary, remove this
node_info := node.info
mut is_auto_heap := false
if node_info is ast.IdentVar {
// x ?int
// `x = 10` => `x.data = 10` (g.right_is_opt == false)
// `x = new_opt()` => `x = new_opt()` (g.right_is_opt == true)
// `println(x)` => `println(*(int*)x.data)`
if node_info.is_optional && !(g.is_assign_lhs && g.right_is_opt) {
g.write('/*opt*/')
styp := g.base_type(node_info.typ)
g.write('(*($styp*)${name}.data)')
return
}
if !g.is_assign_lhs && node_info.share == .shared_t {
g.write('${name}.val')
return
}
v := node.obj
if v is ast.Var {
is_auto_heap = v.is_auto_heap && (!g.is_assign_lhs || g.assign_op != .decl_assign)
if is_auto_heap {
g.write('(*(')
}
if v.smartcasts.len > 0 {
v_sym := g.table.sym(v.typ)
if !prevent_sum_type_unwrapping_once {
for _ in v.smartcasts {
g.write('(')
if v_sym.kind == .sum_type && !is_auto_heap {
g.write('*')
}
}
for i, typ in v.smartcasts {
cast_sym := g.table.sym(g.unwrap_generic(typ))
mut is_ptr := false
if i == 0 {
g.write(name)
if v.orig_type.is_ptr() {
is_ptr = true
}
}
dot := if is_ptr || is_auto_heap { '->' } else { '.' }
if cast_sym.info is ast.Aggregate {
sym := g.table.sym(cast_sym.info.types[g.aggregate_type_idx])
g.write('${dot}_$sym.cname')
} else {
g.write('${dot}_$cast_sym.cname')
}
g.write(')')
}
if is_auto_heap {
g.write('))')
}
return
}
}
if v.is_inherited {
g.write(closure_ctx + '->')
}
}
} else if node_info is ast.IdentFn {
if g.pref.translated || g.file.is_translated {
// `p_mobjthinker` => `P_MobjThinker`
if f := g.table.find_fn(node.name) {
// TODO PERF fn lookup for each fn call in translated mode
if f.attrs.contains('c') {
name = f.attrs[0].arg
}
}
}
if g.pref.obfuscate && g.cur_mod.name == 'main' && name.starts_with('main__') {
key := node.name
g.write('/* obf identfn: $key */')
name = g.obf_table[key] or {
panic('cgen: obf name "$key" not found, this should never happen')
}
}
}
g.write(g.get_ternary_name(name))
if is_auto_heap {
g.write('))')
}
}
fn (mut g Gen) cast_expr(node ast.CastExpr) {
sym := g.table.sym(node.typ)
if sym.kind in [.sum_type, .interface_] {
g.expr_with_cast(node.expr, node.expr_type, node.typ)
} else if sym.kind == .struct_ && !node.typ.is_ptr() && !(sym.info as ast.Struct).is_typedef {
// deprecated, replaced by Struct{...exr}
styp := g.typ(node.typ)
g.write('*(($styp *)(&')
g.expr(node.expr)
g.write('))')
} else if sym.kind == .alias && g.table.final_sym(node.typ).kind == .array_fixed {
if node.expr is ast.ArrayInit && g.assign_op != .decl_assign {
g.write('(${g.typ(node.expr.typ)})')
}
g.expr(node.expr)
} else if node.expr_type == ast.bool_type && node.typ.is_int() {
styp := g.typ(node.typ)
g.write('($styp[]){(')
g.expr(node.expr)
g.write(')?1:0}[0]')
} else {
styp := g.typ(node.typ)
if (g.pref.translated || g.file.is_translated) && sym.kind == .function {
// TODO handle the type in fn casts, not just exprs
/*
info := sym.info as ast.FnType
if info.func.attrs.contains('c') {
// name = f.attrs[0].arg
}
*/
}
mut cast_label := ''
// `ast.string_type` is done for MSVC's bug
if sym.kind != .alias
|| (sym.info as ast.Alias).parent_type !in [node.expr_type, ast.string_type] {
cast_label = '($styp)'
}
if node.typ.has_flag(.optional) && node.expr is ast.None {
g.gen_optional_error(node.typ, node.expr)
} else {
g.write('(${cast_label}(')
if sym.kind == .alias && g.table.final_sym(node.typ).kind == .string {
ptr_cnt := node.typ.nr_muls() - node.expr_type.nr_muls()
if ptr_cnt > 0 {
g.write('&'.repeat(ptr_cnt))
}
}
g.expr(node.expr)
if node.expr is ast.IntegerLiteral {
if node.typ in [ast.u64_type, ast.u32_type, ast.u16_type] {
if !node.expr.val.starts_with('-') {
g.write('U')
}
}
}
g.write('))')
}
}
}
fn (mut g Gen) concat_expr(node ast.ConcatExpr) {
mut styp := g.typ(node.return_type)
if g.inside_return {
styp = g.typ(g.fn_decl.return_type)
} else if g.inside_or_block {
styp = g.typ(g.or_expr_return_type)
}
sym := g.table.sym(node.return_type)
is_multi := sym.kind == .multi_return
if !is_multi {
g.expr(node.vals[0])
} else {
g.write('($styp){')
for i, expr in node.vals {
g.write('.arg$i=')
g.expr(expr)
if i < node.vals.len - 1 {
g.write(',')
}
}
g.write('}')
}
}
[inline]
fn (g &Gen) expr_is_multi_return_call(expr ast.Expr) bool {
if expr is ast.CallExpr {
return g.table.sym(expr.return_type).kind == .multi_return
}
return false
}
fn (mut g Gen) gen_result_error(target_type ast.Type, expr ast.Expr) {
styp := g.typ(target_type)
g.write('($styp){ .is_error=true, .err=')
g.expr(expr)
g.write(', .data={EMPTY_STRUCT_INITIALIZATION} }')
}
// NB: remove this when optional has no errors anymore
fn (mut g Gen) gen_optional_error(target_type ast.Type, expr ast.Expr) {
styp := g.typ(target_type)
g.write('($styp){ .state=2, .err=')
g.expr(expr)
g.write(', .data={EMPTY_STRUCT_INITIALIZATION} }')
}
fn (mut g Gen) return_stmt(node ast.Return) {
g.write_v_source_line_info(node.pos)
g.inside_return = true
defer {
g.inside_return = false
}
if node.exprs.len > 0 {
// skip `return $vweb.html()`
if node.exprs[0] is ast.ComptimeCall {
g.expr(node.exprs[0])
g.writeln(';')
return
}
}
// got to do a correct check for multireturn
sym := g.table.sym(g.fn_decl.return_type)
fn_return_is_multi := sym.kind == .multi_return
fn_return_is_optional := g.fn_decl.return_type.has_flag(.optional)
fn_return_is_result := g.fn_decl.return_type.has_flag(.result)
mut has_semicolon := false
if node.exprs.len == 0 {
g.write_defer_stmts_when_needed()
if fn_return_is_optional || fn_return_is_result {
styp := g.typ(g.fn_decl.return_type)
g.writeln('return ($styp){0};')
} else {
if g.is_autofree {
g.trace_autofree('// free before return (no values returned)')
g.autofree_scope_vars(node.pos.pos - 1, node.pos.line_nr, true)
}
g.writeln('return;')
}
return
}
tmpvar := g.new_tmp_var()
ret_typ := g.typ(g.unwrap_generic(g.fn_decl.return_type))
mut use_tmp_var := g.defer_stmts.len > 0 || g.defer_profile_code.len > 0
|| g.cur_lock.lockeds.len > 0
// handle promoting none/error/function returning _option'
if fn_return_is_optional {
optional_none := node.exprs[0] is ast.None
ftyp := g.typ(node.types[0])
mut is_regular_option := ftyp == '_option'
if optional_none || is_regular_option || node.types[0] == ast.error_type_idx {
if !isnil(g.fn_decl) && g.fn_decl.is_test {
test_error_var := g.new_tmp_var()
g.write('$ret_typ $test_error_var = ')
g.gen_optional_error(g.fn_decl.return_type, node.exprs[0])
g.writeln(';')
g.write_defer_stmts_when_needed()
g.gen_failing_return_error_for_test_fn(node, test_error_var)
return
}
if use_tmp_var {
g.write('$ret_typ $tmpvar = ')
} else {
g.write('return ')
}
g.gen_optional_error(g.fn_decl.return_type, node.exprs[0])
g.writeln(';')
if use_tmp_var {
g.write_defer_stmts_when_needed()
g.writeln('return $tmpvar;')
}
return
}
}
// handle promoting error/function returning result
if fn_return_is_result {
ftyp := g.typ(node.types[0])
mut is_regular_result := ftyp == c.result_name
if is_regular_result || node.types[0] == ast.error_type_idx {
if !isnil(g.fn_decl) && g.fn_decl.is_test {
test_error_var := g.new_tmp_var()
g.write('$ret_typ $test_error_var = ')
g.gen_result_error(g.fn_decl.return_type, node.exprs[0])
g.writeln(';')
g.write_defer_stmts_when_needed()
g.gen_failing_return_error_for_test_fn(node, test_error_var)
return
}
if use_tmp_var {
g.write('$ret_typ $tmpvar = ')
} else {
g.write('return ')
}
g.gen_result_error(g.fn_decl.return_type, node.exprs[0])
g.writeln(';')
if use_tmp_var {
g.write_defer_stmts_when_needed()
g.writeln('return $tmpvar;')
}
return
}
}
// regular cases
if fn_return_is_multi && node.exprs.len > 0 && !g.expr_is_multi_return_call(node.exprs[0]) {
if node.exprs.len == 1 && (node.exprs[0] is ast.IfExpr || node.exprs[0] is ast.MatchExpr) {
// use a temporary for `return if cond { x,y } else { a,b }` or `return match expr { abc { x, y } else { z, w } }`
g.write('$ret_typ $tmpvar = ')
g.expr(node.exprs[0])
g.writeln(';')
g.write_defer_stmts_when_needed()
g.writeln('return $tmpvar;')
return
}
typ_sym := g.table.sym(g.fn_decl.return_type)
mr_info := typ_sym.info as ast.MultiReturn
mut styp := ''
if fn_return_is_optional || fn_return_is_result {
g.writeln('$ret_typ $tmpvar;')
styp = g.base_type(g.fn_decl.return_type)
g.write('opt_ok2(&($styp/*X*/[]) { ')
} else {
if use_tmp_var {
g.write('$ret_typ $tmpvar = ')
} else {
g.write('return ')
}
styp = g.typ(g.fn_decl.return_type)
}
// Use this to keep the tmp assignments in order
mut multi_unpack := ''
g.write('($styp){')
mut arg_idx := 0
for i, expr in node.exprs {
// Check if we are dealing with a multi return and handle it seperately
if g.expr_is_multi_return_call(expr) {
c := expr as ast.CallExpr
expr_sym := g.table.sym(c.return_type)
// Create a tmp for this call
mut tmp := g.new_tmp_var()
if !c.return_type.has_flag(.optional) {
s := g.go_before_stmt(0)
expr_styp := g.typ(c.return_type)
g.write('$expr_styp $tmp=')
g.expr(expr)
g.writeln(';')
multi_unpack += g.go_before_stmt(0)
g.write(s)
} else {
s := g.go_before_stmt(0)
// TODO
// I (emily) am sorry for doing this
// I cant find another way to do this so right now
// this will have to do.
g.tmp_count--
g.expr(expr)
multi_unpack += g.go_before_stmt(0)
g.write(s)
// modify tmp so that it is the opt deref
// TODO copy-paste from cgen.v:2397
expr_styp := g.base_type(c.return_type)
tmp = ('/*opt*/(*($expr_styp*)${tmp}.data)')
}
expr_types := expr_sym.mr_info().types
for j, _ in expr_types {
g.write('.arg$arg_idx=${tmp}.arg$j')
if j < expr_types.len || i < node.exprs.len - 1 {
g.write(',')
}
arg_idx++
}
continue
}
g.write('.arg$arg_idx=')
if expr.is_auto_deref_var() {
g.write('*')
}
if g.table.sym(mr_info.types[i]).kind in [.sum_type, .interface_] {
g.expr_with_cast(expr, node.types[i], mr_info.types[i])
} else {
g.expr(expr)
}
arg_idx++
if i < node.exprs.len - 1 {
g.write(', ')
}
}
g.write('}')
if fn_return_is_optional || fn_return_is_result {
g.writeln(' }, ($c.option_name*)(&$tmpvar), sizeof($styp));')
g.write_defer_stmts_when_needed()
g.write('return $tmpvar')
}
// Make sure to add our unpacks
if multi_unpack.len > 0 {
g.insert_before_stmt(multi_unpack)
}
if use_tmp_var && !fn_return_is_optional && !fn_return_is_result {
if !has_semicolon {
g.writeln(';')
}
g.write_defer_stmts_when_needed()
g.writeln('return $tmpvar;')
has_semicolon = true
}
} else if node.exprs.len >= 1 {
if node.types.len == 0 {
g.checker_bug('node.exprs.len == $node.exprs.len && node.types.len == 0',
node.pos)
}
// normal return
return_sym := g.table.sym(node.types[0])
expr0 := node.exprs[0]
// `return opt_ok(expr)` for functions that expect an optional
expr_type_is_opt := match expr0 {
ast.CallExpr {
expr0.return_type.has_flag(.optional) && expr0.or_block.kind == .absent
}
else {
node.types[0].has_flag(.optional)
}
}
if fn_return_is_optional && !expr_type_is_opt && return_sym.name != c.option_name {
styp := g.base_type(g.fn_decl.return_type)
g.writeln('$ret_typ $tmpvar;')
g.write('opt_ok2(&($styp[]) { ')
if !g.fn_decl.return_type.is_ptr() && node.types[0].is_ptr() {
if !(node.exprs[0] is ast.Ident && !g.is_amp) {
g.write('*')
}
}
for i, expr in node.exprs {
g.expr_with_cast(expr, node.types[i], g.fn_decl.return_type.clear_flag(.optional))
if i < node.exprs.len - 1 {
g.write(', ')
}
}
g.writeln(' }, ($c.option_name*)(&$tmpvar), sizeof($styp));')
g.write_defer_stmts_when_needed()
g.autofree_scope_vars(node.pos.pos - 1, node.pos.line_nr, true)
g.writeln('return $tmpvar;')
return
}
expr_type_is_result := match expr0 {
ast.CallExpr {
expr0.return_type.has_flag(.result) && expr0.or_block.kind == .absent
}
else {
node.types[0].has_flag(.result)
}
}
if fn_return_is_result && !expr_type_is_result && return_sym.name != c.result_name {
styp := g.base_type(g.fn_decl.return_type)
g.writeln('$ret_typ $tmpvar;')
g.write('${c.result_name}_ok(&($styp[]) { ')
if !g.fn_decl.return_type.is_ptr() && node.types[0].is_ptr() {
if !(node.exprs[0] is ast.Ident && !g.is_amp) {
g.write('*')
}
}
for i, expr in node.exprs {
g.expr_with_cast(expr, node.types[i], g.fn_decl.return_type.clear_flag(.result))
if i < node.exprs.len - 1 {
g.write(', ')
}
}
g.writeln(' }, ($c.result_name*)(&$tmpvar), sizeof($styp));')
g.write_defer_stmts_when_needed()
g.autofree_scope_vars(node.pos.pos - 1, node.pos.line_nr, true)
g.writeln('return $tmpvar;')
return
}
// autofree before `return`
// set free_parent_scopes to true, since all variables defined in parent
// scopes need to be freed before the return
if g.is_autofree {
expr := node.exprs[0]
if expr is ast.Ident {
g.returned_var_name = expr.name
}
}
// free := g.is_autofree && !g.is_builtin_mod // node.exprs[0] is ast.CallExpr
// Create a temporary variable for the return expression
use_tmp_var = use_tmp_var || !g.is_builtin_mod // node.exprs[0] is ast.CallExpr
if use_tmp_var {
// `return foo(a, b, c)`
// `tmp := foo(a, b, c); free(a); free(b); free(c); return tmp;`
// Save return value in a temp var so that all args (a,b,c) can be freed
// Don't use a tmp var if a variable is simply returned: `return x`
// Just in case of defer statements exists, that the return values cannot
// be modified.
if node.exprs[0] !is ast.Ident || use_tmp_var {
g.write('$ret_typ $tmpvar = ')
} else {
use_tmp_var = false
g.write_defer_stmts_when_needed()
if !g.is_builtin_mod {
g.autofree_scope_vars(node.pos.pos - 1, node.pos.line_nr, true)
}
g.write('return ')
}
} else {
g.autofree_scope_vars(node.pos.pos - 1, node.pos.line_nr, true)
g.write('return ')
}
if expr0.is_auto_deref_var() {
if g.fn_decl.return_type.is_ptr() {
var_str := g.expr_string(expr0)
g.write(var_str.trim('&'))
} else if g.table.sym(g.fn_decl.return_type).kind in [.sum_type, .interface_] {
g.expr_with_cast(expr0, node.types[0], g.fn_decl.return_type)
} else {
g.write('*')
g.expr(expr0)
}
} else {
g.expr_with_cast(node.exprs[0], node.types[0], g.fn_decl.return_type)
}
if use_tmp_var {
g.writeln(';')
has_semicolon = true
g.write_defer_stmts_when_needed()
if !g.is_builtin_mod {
g.autofree_scope_vars(node.pos.pos - 1, node.pos.line_nr, true)
}
g.write('return $tmpvar')
has_semicolon = false
}
} else { // if node.exprs.len == 0 {
println('this should never happen')
g.write('/*F*/return')
}
if !has_semicolon {
g.writeln(';')
}
}
fn (mut g Gen) const_decl(node ast.ConstDecl) {
g.inside_const = true
defer {
g.inside_const = false
}
for field in node.fields {
if g.pref.skip_unused {
if field.name !in g.table.used_consts {
$if trace_skip_unused_consts ? {
eprintln('>> skipping unused const name: $field.name')
}
continue
}
}
name := c_name(field.name)
const_name := if node.attrs.contains('export') && !g.is_builtin_mod {
// TODO this only works for the first const in the group for now
node.attrs[0].arg
} else {
'_const_' + name
}
field_expr := field.expr
match field.expr {
ast.ArrayInit {
if field.expr.is_fixed {
styp := g.typ(field.expr.typ)
if g.pref.build_mode != .build_module {
val := g.expr_string(field.expr)
g.definitions.writeln('$styp $const_name = $val; // fixed array const')
} else {
g.definitions.writeln('$styp $const_name; // fixed array const')
}
} else {
g.const_decl_init_later(field.mod, name, field.expr, field.typ, false)
}
}
ast.StringLiteral {
g.definitions.writeln('string $const_name; // a string literal, inited later')
if g.pref.build_mode != .build_module {
val := g.expr_string(field.expr)
g.stringliterals.writeln('\t$const_name = $val;')
}
}
ast.CallExpr {
if field.expr.return_type.has_flag(.optional) {
g.inside_const_optional = true
unwrap_option := field.expr.or_block.kind != .absent
g.const_decl_init_later(field.mod, name, field.expr, field.typ, unwrap_option)
} else {
g.const_decl_init_later(field.mod, name, field.expr, field.typ, false)
}
g.inside_const_optional = false
}
else {
// Note: -usecache uses prebuilt modules, each compiled with:
// `v build-module vlib/module`
// combined with a top level program, that is compiled with:
// `v -usecache toplevel`
// For it to work, the consts optimisations should be identical, because
// only the top level program will have the const initialisation code for
// all the modules.
// TODO: encapsulate const initialisation for each module in a separate function,
// that is just called by the top level program in _vinit, instead of generating
// all the code inside _vinit for each module.
use_cache_mode := g.pref.build_mode == .build_module || g.pref.use_cache
if !use_cache_mode {
if ct_value := field.comptime_expr_value() {
if g.const_decl_precomputed(field.mod, name, ct_value, field.typ) {
continue
}
}
}
if field.is_simple_define_const() {
// "Simple" expressions are not going to need multiple statements,
// only the ones which are inited later, so it's safe to use expr_string
g.const_decl_simple_define(field.name, g.expr_string(field_expr))
} else {
g.const_decl_init_later(field.mod, name, field.expr, field.typ, false)
}
}
}
}
}
fn (mut g Gen) const_decl_precomputed(mod string, name string, ct_value ast.ComptTimeConstValue, typ ast.Type) bool {
mut styp := g.typ(typ)
cname := if g.pref.translated && !g.is_builtin_mod { name } else { '_const_$name' }
$if trace_const_precomputed ? {
eprintln('> styp: $styp | cname: $cname | ct_value: $ct_value | $ct_value.type_name()')
}
match ct_value {
i8 {
g.const_decl_write_precomputed(styp, cname, ct_value.str())
}
i16 {
g.const_decl_write_precomputed(styp, cname, ct_value.str())
}
int {
g.const_decl_write_precomputed(styp, cname, ct_value.str())
}
i64 {
if typ == ast.i64_type {
return false
}
if typ == ast.int_type {
// TODO: use g.const_decl_write_precomputed here too.
// For now, use #define macros, so existing code compiles
// with -cstrict. Add checker errors for overflows instead,
// so V can catch them earlier, instead of relying on the
// C compiler for that.
g.const_decl_simple_define(name, ct_value.str())
return true
}
if typ == ast.u64_type {
g.const_decl_write_precomputed(styp, cname, ct_value.str() + 'U')
} else {
g.const_decl_write_precomputed(styp, cname, ct_value.str())
}
}
u8 {
g.const_decl_write_precomputed(styp, cname, ct_value.str())
}
u16 {
g.const_decl_write_precomputed(styp, cname, ct_value.str())
}
u32 {
g.const_decl_write_precomputed(styp, cname, ct_value.str())
}
u64 {
g.const_decl_write_precomputed(styp, cname, ct_value.str() + 'U')
}
f32 {
g.const_decl_write_precomputed(styp, cname, ct_value.str())
}
f64 {
g.const_decl_write_precomputed(styp, cname, ct_value.str())
}
rune {
rune_code := u32(ct_value)
if rune_code <= 127 {
if rune_code in [`"`, `\\`, `'`] {
return false
}
escval := util.smart_quote(u8(rune_code).ascii_str(), false)
g.const_decl_write_precomputed(styp, cname, "'$escval'")
} else {
g.const_decl_write_precomputed(styp, cname, u32(ct_value).str())
}
}
string {
escaped_val := util.smart_quote(ct_value, false)
// g.const_decl_write_precomputed(styp, cname, '_SLIT("$escaped_val")')
// TODO: ^ the above for strings, cause:
// `error C2099: initializer is not a constant` errors in MSVC,
// so fall back to the delayed initialisation scheme:
g.definitions.writeln('$styp $cname; // str inited later')
g.init.writeln('\t$cname = _SLIT("$escaped_val");')
if g.is_autofree {
g.cleanups[mod].writeln('\tstring_free(&$cname);')
}
}
ast.EmptyExpr {
return false
}
}
return true
}
fn (mut g Gen) const_decl_write_precomputed(styp string, cname string, ct_value string) {
g.definitions.writeln('$styp $cname = $ct_value; // precomputed')
}
fn (mut g Gen) const_decl_simple_define(name string, val string) {
// Simple expressions should use a #define
// so that we don't pollute the binary with unnecessary global vars
// Do not do this when building a module, otherwise the consts
// will not be accessible.
mut x := util.no_dots(name)
if g.pref.translated && !g.is_builtin_mod && !util.module_is_builtin(name.all_before_last('.')) {
// Don't prepend "_const" to translated C consts,
// but only in user code, continue prepending "_const" to builtin consts.
if x.starts_with('main__') {
x = x['main__'.len..]
}
} else {
x = '_const_$x'
}
if g.pref.translated {
g.definitions.write_string('const int $x = ')
} else {
g.definitions.write_string('#define $x ')
}
g.definitions.writeln(val)
if g.pref.translated {
g.definitions.write_string(';')
}
}
fn (mut g Gen) const_decl_init_later(mod string, name string, expr ast.Expr, typ ast.Type, unwrap_option bool) {
// Initialize more complex consts in `void _vinit/2{}`
// (C doesn't allow init expressions that can't be resolved at compile time).
mut styp := g.typ(typ)
cname := if g.pref.translated && !g.is_builtin_mod { name } else { '_const_$name' }
g.definitions.writeln('$styp $cname; // inited later')
if cname == '_const_os__args' {
if g.pref.os == .windows {
g.init.writeln('\t_const_os__args = os__init_os_args_wide(___argc, (byteptr*)___argv);')
} else {
g.init.writeln('\t_const_os__args = os__init_os_args(___argc, (byte**)___argv);')
}
} else {
if unwrap_option {
g.init.writeln('{')
g.init.writeln(g.expr_string_surround('\t$cname = *($styp*)', expr, '.data;'))
g.init.writeln('}')
} else {
g.init.writeln(g.expr_string_surround('\t$cname = ', expr, ';'))
}
}
if g.is_autofree {
sym := g.table.sym(typ)
if styp.starts_with('Array_') {
if sym.has_method_with_generic_parent('free') {
g.cleanup.writeln('\t${styp}_free(&$cname);')
} else {
g.cleanup.writeln('\tarray_free(&$cname);')
}
} else if styp == 'string' {
g.cleanup.writeln('\tstring_free(&$cname);')
} else if sym.kind == .map {
g.cleanup.writeln('\tmap_free(&$cname);')
} else if styp == 'IError' {
g.cleanup.writeln('\tIError_free(&$cname);')
}
}
}
fn (mut g Gen) global_decl(node ast.GlobalDecl) {
// was static used here to to make code optimizable? it was removed when
// 'extern' was used to fix the duplicate symbols with usecache && clang
// visibility_kw := if g.pref.build_mode == .build_module && g.is_builtin_mod { 'static ' }
visibility_kw := if
(g.pref.use_cache || (g.pref.build_mode == .build_module && g.module_built != node.mod))
&& !util.should_bundle_module(node.mod) {
'extern '
} else {
''
}
// should the global be initialized now, not later in `vinit()`
cinit := node.attrs.contains('cinit')
should_init := (!g.pref.use_cache && g.pref.build_mode != .build_module)
|| (g.pref.build_mode == .build_module && g.module_built == node.mod)
mut attributes := ''
if node.attrs.contains('weak') {
attributes += 'VWEAK '
}
for field in node.fields {
if g.pref.skip_unused {
if field.name !in g.table.used_globals {
$if trace_skip_unused_globals ? {
eprintln('>> skipping unused global name: $field.name')
}
continue
}
}
styp := g.typ(field.typ)
mut anon_fn_expr := unsafe { field.expr }
if field.has_expr && mut anon_fn_expr is ast.AnonFn {
g.gen_anon_fn_decl(mut anon_fn_expr)
fn_type_name := g.get_anon_fn_type_name(mut anon_fn_expr, field.name)
g.definitions.writeln('$fn_type_name = ${g.table.sym(field.typ).name}; // global2')
continue
}
modifier := if field.is_volatile { ' volatile ' } else { '' }
g.definitions.write_string('$visibility_kw$modifier$styp $attributes $field.name')
if field.has_expr || cinit {
if g.pref.translated {
g.definitions.write_string(' = ${g.expr_string(field.expr)}')
} else if (field.expr.is_literal() && should_init) || cinit {
// Simple literals can be initialized right away in global scope in C.
// e.g. `int myglobal = 10;`
g.definitions.write_string(' = ${g.expr_string(field.expr)}')
} else {
// More complex expressions need to be moved to `_vinit()`
// e.g. `__global ( mygblobal = 'hello ' + world' )`
g.global_init.writeln('\t$field.name = ${g.expr_string(field.expr)}; // 3global')
}
} else if !g.pref.translated { // don't zero globals from C code
default_initializer := g.type_default(field.typ)
if default_initializer == '{0}' && should_init {
g.definitions.write_string(' = {0}')
} else {
if field.name !in ['as_cast_type_indexes', 'g_memory_block', 'global_allocator'] {
g.global_init.writeln('\t$field.name = *($styp*)&(($styp[]){${g.type_default(field.typ)}}[0]); // global')
}
}
}
g.definitions.writeln('; // global4')
}
}
fn (mut g Gen) assoc(node ast.Assoc) {
g.writeln('// assoc')
if node.typ == 0 {
return
}
styp := g.typ(node.typ)
g.writeln('($styp){')
mut inited_fields := map[string]int{}
for i, field in node.fields {
inited_fields[field] = i
}
// Merge inited_fields in the rest of the fields.
sym := g.table.sym(node.typ)
info := sym.info as ast.Struct
for field in info.fields {
field_name := c_name(field.name)
if field.name in inited_fields {
g.write('\t.$field_name = ')
g.expr(node.exprs[inited_fields[field.name]])
g.writeln(', ')
} else {
g.writeln('\t.$field_name = ${node.var_name}.$field_name,')
}
}
g.write('}')
if g.is_amp {
g.write(', sizeof($styp))')
}
}
[noreturn]
fn verror(s string) {
util.verror('cgen error', s)
}
[noreturn]
fn (g &Gen) error(s string, pos token.Pos) {
ferror := util.formatted_error('cgen error:', s, g.file.path, pos)
eprintln(ferror)
exit(1)
}
fn (g &Gen) checker_bug(s string, pos token.Pos) {
g.error('checker bug; $s', pos)
}
fn (mut g Gen) write_init_function() {
if g.pref.no_builtin || (g.pref.translated && g.pref.is_o) {
return
}
util.timing_start(@METHOD)
defer {
util.timing_measure(@METHOD)
}
if g.pref.is_liveshared {
return
}
fn_vinit_start_pos := g.out.len
// ___argv is declared as voidptr here, because that unifies the windows/unix logic
g.writeln('void _vinit(int ___argc, voidptr ___argv) {')
if 'no_segfault_handler' !in g.pref.compile_defines || g.pref.os == .wasm32 {
// 11 is SIGSEGV. It is hardcoded here, to avoid FreeBSD compilation errors for trivial examples.
g.writeln('#if __STDC_HOSTED__ == 1\n\tsignal(11, v_segmentation_fault_handler);\n#endif')
}
if g.pref.is_bare {
g.writeln('init_global_allocator();')
}
if g.pref.prealloc {
g.writeln('prealloc_vinit();')
}
// Note: the as_cast table should be *before* the other constant initialize calls,
// because it may be needed during const initialization of builtin and during
// calling module init functions too, just in case they do fail...
g.write('\tas_cast_type_indexes = ')
g.writeln(g.as_cast_name_table())
//
g.writeln('\tbuiltin_init();')
g.writeln('\tvinit_string_literals();')
//
if g.nr_closures > 0 {
g.writeln('\t_closure_mtx_init();')
}
for mod_name in g.table.modules {
g.writeln('\t{ // Initializations for module $mod_name :')
g.write(g.inits[mod_name].str())
g.write(g.global_inits[mod_name].str())
init_fn_name := '${mod_name}.init'
if initfn := g.table.find_fn(init_fn_name) {
if initfn.return_type == ast.void_type && initfn.params.len == 0 {
mod_c_name := util.no_dots(mod_name)
init_fn_c_name := '${mod_c_name}__init'
g.writeln('\t${init_fn_c_name}();')
}
}
g.writeln('\t}')
}
g.writeln('}')
if g.pref.printfn_list.len > 0 && '_vinit' in g.pref.printfn_list {
println(g.out.after(fn_vinit_start_pos))
}
//
fn_vcleanup_start_pos := g.out.len
g.writeln('void _vcleanup(void) {')
if g.is_autofree {
// g.writeln('puts("cleaning up...");')
reversed_table_modules := g.table.modules.reverse()
for mod_name in reversed_table_modules {
g.writeln('\t// Cleanups for module $mod_name :')
g.writeln(g.cleanups[mod_name].str())
}
g.writeln('\tarray_free(&as_cast_type_indexes);')
}
g.writeln('}')
if g.pref.printfn_list.len > 0 && '_vcleanup' in g.pref.printfn_list {
println(g.out.after(fn_vcleanup_start_pos))
}
//
needs_constructor := g.pref.is_shared && g.pref.os != .windows
if needs_constructor {
// shared libraries need a way to call _vinit/2. For that purpose,
// provide a constructor/destructor pair, ensuring that all constants
// are initialized just once, and that they will be freed too.
// Note: os.args in this case will be [].
g.writeln('__attribute__ ((constructor))')
g.writeln('void _vinit_caller() {')
g.writeln('\tstatic bool once = false; if (once) {return;} once = true;')
g.writeln('\t_vinit(0,0);')
g.writeln('}')
g.writeln('__attribute__ ((destructor))')
g.writeln('void _vcleanup_caller() {')
g.writeln('\tstatic bool once = false; if (once) {return;} once = true;')
g.writeln('\t_vcleanup();')
g.writeln('}')
}
}
const (
builtins = ['string', 'array', 'DenseArray', 'map', 'Error', 'IError', option_name, result_name]
)
fn (mut g Gen) write_builtin_types() {
if g.pref.no_builtin {
return
}
mut builtin_types := []&ast.TypeSymbol{} // builtin types
// builtin types need to be on top
// everything except builtin will get sorted
for builtin_name in c.builtins {
sym := g.table.sym_by_idx(g.table.type_idxs[builtin_name])
if sym.kind == .interface_ {
g.write_interface_typedef(sym)
g.write_interface_typesymbol_declaration(sym)
} else {
builtin_types << sym
}
}
g.write_types(builtin_types)
}
// C struct definitions, ordered
// Sort the types, make sure types that are referenced by other types
// are added before them.
fn (mut g Gen) write_sorted_types() {
g.type_definitions.writeln('// #start sorted_symbols')
defer {
g.type_definitions.writeln('// #end sorted_symbols')
}
mut symbols := []&ast.TypeSymbol{cap: g.table.type_symbols.len} // structs that need to be sorted
for sym in g.table.type_symbols {
if sym.name !in c.builtins {
symbols << sym
}
}
sorted_symbols := g.sort_structs(symbols)
g.write_types(sorted_symbols)
}
fn (mut g Gen) write_types(symbols []&ast.TypeSymbol) {
for sym in symbols {
if sym.name.starts_with('C.') {
continue
}
if sym.kind == .none_ {
g.type_definitions.writeln('struct none {')
g.type_definitions.writeln('\tEMPTY_STRUCT_DECLARATION;')
g.type_definitions.writeln('};')
g.typedefs.writeln('typedef struct none none;')
}
// sym := g.table.sym(typ)
mut name := sym.cname
match sym.info {
ast.Struct {
if sym.info.is_generic {
continue
}
if name.contains('_T_') {
g.typedefs.writeln('typedef struct $name $name;')
}
// TODO avoid buffer manip
start_pos := g.type_definitions.len
mut pre_pragma := ''
mut post_pragma := ''
for attr in sym.info.attrs {
match attr.name {
'_pack' {
pre_pragma += '#pragma pack(push, $attr.arg)\n'
post_pragma += '#pragma pack(pop)'
}
else {}
}
}
is_minify := sym.info.is_minify
g.type_definitions.writeln(pre_pragma)
if sym.info.is_union {
g.type_definitions.writeln('union $name {')
} else {
g.type_definitions.writeln('struct $name {')
}
if sym.info.fields.len > 0 || sym.info.embeds.len > 0 {
for field in sym.info.fields {
// Some of these structs may want to contain
// optionals that may not be defined at this point
// if this is the case then we are going to
// buffer manip out in front of the struct
// write the optional in and then continue
// FIXME: for parallel cgen (two different files using the same optional in struct fields)
if field.typ.has_flag(.optional) {
// Dont use g.typ() here becuase it will register
// optional and we dont want that
styp, base := g.optional_type_name(field.typ)
lock g.done_optionals {
if base !in g.done_optionals {
g.done_optionals << base
last_text := g.type_definitions.after(start_pos).clone()
g.type_definitions.go_back_to(start_pos)
g.typedefs.writeln('typedef struct $styp $styp;')
g.type_definitions.writeln('${g.optional_type_text(styp,
base)};')
g.type_definitions.write_string(last_text)
}
}
}
type_name := g.typ(field.typ)
field_name := c_name(field.name)
volatile_prefix := if field.is_volatile { 'volatile ' } else { '' }
mut size_suffix := ''
if is_minify && !g.is_cc_msvc {
if field.typ == ast.bool_type_idx {
size_suffix = ' : 1'
} else {
field_sym := g.table.sym(field.typ)
if field_sym.info is ast.Enum {
if !field_sym.info.is_flag && !field_sym.info.uses_exprs {
mut bits_needed := 0
mut l := field_sym.info.vals.len
for l > 0 {
bits_needed++
l >>= 1
}
size_suffix = ' : $bits_needed'
}
}
}
}
g.type_definitions.writeln('\t$volatile_prefix$type_name $field_name$size_suffix;')
}
} else {
g.type_definitions.writeln('\tEMPTY_STRUCT_DECLARATION;')
}
// g.type_definitions.writeln('} $name;\n')
//
ti_attrs := if sym.info.attrs.contains('packed') {
'__attribute__((__packed__))'
} else {
''
}
g.type_definitions.writeln('}$ti_attrs;\n')
g.type_definitions.writeln(post_pragma)
}
ast.Alias {
// ast.Alias { TODO
}
ast.Thread {
if g.pref.os == .windows {
if name == '__v_thread' {
g.type_definitions.writeln('typedef HANDLE $name;')
} else {
// Windows can only return `u32` (no void*) from a thread, so the
// V gohandle must maintain a pointer to the return value
g.type_definitions.writeln('typedef struct {')
g.type_definitions.writeln('\tvoid* ret_ptr;')
g.type_definitions.writeln('\tHANDLE handle;')
g.type_definitions.writeln('} $name;')
}
} else {
if !g.pref.is_bare && !g.pref.no_builtin {
g.type_definitions.writeln('typedef pthread_t $name;')
}
}
}
ast.SumType {
if sym.info.is_generic {
continue
}
g.typedefs.writeln('typedef struct $name $name;')
g.type_definitions.writeln('')
g.type_definitions.writeln('// Union sum type $name = ')
for variant in sym.info.variants {
g.type_definitions.writeln('// | ${variant:4d} = ${g.typ(variant.idx()):-20s}')
}
g.type_definitions.writeln('struct $name {')
g.type_definitions.writeln('\tunion {')
for variant in sym.info.variants {
variant_sym := g.table.sym(variant)
g.type_definitions.writeln('\t\t${g.typ(variant.ref())} _$variant_sym.cname;')
}
g.type_definitions.writeln('\t};')
g.type_definitions.writeln('\tint _typ;')
if sym.info.fields.len > 0 {
g.writeln('\t// pointers to common sumtype fields')
for field in sym.info.fields {
g.type_definitions.writeln('\t${g.typ(field.typ.ref())} $field.name;')
}
}
g.type_definitions.writeln('};')
g.type_definitions.writeln('')
}
ast.ArrayFixed {
elem_sym := g.table.sym(sym.info.elem_type)
if !elem_sym.is_builtin() && !sym.info.elem_type.has_flag(.generic) {
// .array_fixed {
styp := sym.cname
// array_fixed_char_300 => char x[300]
// [16]&&&EventListener{} => Array_fixed_main__EventListener_16_ptr3
// => typedef main__EventListener*** Array_fixed_main__EventListener_16_ptr3 [16]
mut fixed_elem_name := g.typ(sym.info.elem_type.set_nr_muls(0))
if sym.info.elem_type.is_ptr() {
fixed_elem_name += '*'.repeat(sym.info.elem_type.nr_muls())
}
len := sym.info.size
if fixed_elem_name.starts_with('C__') {
fixed_elem_name = fixed_elem_name[3..]
}
if elem_sym.info is ast.FnType {
pos := g.out.len
g.write_fn_ptr_decl(&elem_sym.info, '')
fixed_elem_name = g.out.cut_to(pos)
mut def_str := 'typedef $fixed_elem_name;'
def_str = def_str.replace_once('(*)', '(*$styp[$len])')
g.type_definitions.writeln(def_str)
} else {
g.type_definitions.writeln('typedef $fixed_elem_name $styp [$len];')
}
}
}
else {}
}
}
}
// sort structs by dependant fields
fn (mut g Gen) sort_structs(typesa []&ast.TypeSymbol) []&ast.TypeSymbol {
util.timing_start(@METHOD)
defer {
util.timing_measure(@METHOD)
}
mut dep_graph := depgraph.new_dep_graph()
// types name list
mut type_names := []string{}
for sym in typesa {
type_names << sym.name
}
// loop over types
for sym in typesa {
if sym.kind == .interface_ {
dep_graph.add(sym.name, [])
continue
}
// create list of deps
mut field_deps := []string{}
match sym.info {
ast.ArrayFixed {
dep := g.table.sym(sym.info.elem_type).name
if dep in type_names {
field_deps << dep
}
}
ast.Struct {
for embed in sym.info.embeds {
dep := g.table.sym(embed).name
// skip if not in types list or already in deps
if dep !in type_names || dep in field_deps {
continue
}
field_deps << dep
}
for field in sym.info.fields {
if field.typ.is_ptr() {
continue
}
fsym := g.table.sym(field.typ)
dep := fsym.name
// skip if not in types list or already in deps
if dep !in type_names || dep in field_deps {
continue
}
field_deps << dep
if fsym.info is ast.Alias {
xdep := g.table.sym(fsym.info.parent_type).name
if xdep !in type_names || xdep in field_deps {
continue
}
field_deps << xdep
}
}
}
// ast.Interface {}
else {}
}
// add type and dependant types to graph
dep_graph.add(sym.name, field_deps)
}
// sort graph
dep_graph_sorted := dep_graph.resolve()
if !dep_graph_sorted.acyclic {
// this should no longer be called since it's catched in the parser
// TODO: should it be removed?
verror('cgen.sort_structs(): the following structs form a dependency cycle:\n' +
dep_graph_sorted.display_cycles() +
'\nyou can solve this by making one or both of the dependant struct fields references, eg: field &MyStruct' +
'\nif you feel this is an error, please create a new issue here: https://github.com/vlang/v/issues and tag @joe-conigliaro')
}
// sort types
mut sorted_symbols := []&ast.TypeSymbol{cap: dep_graph_sorted.nodes.len}
for node in dep_graph_sorted.nodes {
sorted_symbols << g.table.sym_by_idx(g.table.type_idxs[node.name])
}
return sorted_symbols
}
[inline]
fn (g &Gen) nth_stmt_pos(n int) int {
return g.stmt_path_pos[g.stmt_path_pos.len - (1 + n)]
}
[inline]
fn (mut g Gen) set_current_pos_as_last_stmt_pos() {
g.stmt_path_pos << g.out.len
}
fn (mut g Gen) go_before_stmt(n int) string {
stmt_pos := g.nth_stmt_pos(n)
return g.out.cut_to(stmt_pos)
}
[inline]
fn (mut g Gen) go_before_ternary() string {
return g.go_before_stmt(g.inside_ternary)
}
fn (mut g Gen) insert_before_stmt(s string) {
cur_line := g.go_before_stmt(g.inside_ternary)
g.writeln(s)
g.write(cur_line)
}
fn (mut g Gen) insert_at(pos int, s string) {
cur_line := g.out.cut_to(pos)
g.writeln(s)
g.write(cur_line)
}
// fn (mut g Gen) start_tmp() {
// }
// If user is accessing the return value eg. in assigment, pass the variable name.
// If the user is not using the optional return value. We need to pass a temp var
// to access its fields (`.ok`, `.error` etc)
// `os.cp(...)` => `Option bool tmp = os__cp(...); if (tmp.state != 0) { ... }`
// Returns the type of the last stmt
fn (mut g Gen) or_block(var_name string, or_block ast.OrExpr, return_type ast.Type) {
cvar_name := c_name(var_name)
mut mr_styp := g.base_type(return_type)
is_none_ok := return_type == ast.ovoid_type
g.writeln(';')
if is_none_ok {
g.writeln('if (${cvar_name}.state != 0 && ${cvar_name}.err._typ != _IError_None___index) {')
} else {
if return_type != 0 && g.table.sym(return_type).kind == .function {
mr_styp = 'voidptr'
}
if return_type.has_flag(.result) {
g.writeln('if (${cvar_name}.is_error) { /*or block*/ ')
} else {
g.writeln('if (${cvar_name}.state != 0) { /*or block*/ ')
}
}
if or_block.kind == .block {
g.or_expr_return_type = return_type.clear_flag(.optional)
if g.inside_or_block {
g.writeln('\terr = ${cvar_name}.err;')
} else {
g.writeln('\tIError err = ${cvar_name}.err;')
}
g.inside_or_block = true
defer {
g.inside_or_block = false
}
stmts := or_block.stmts
if stmts.len > 0 && stmts.last() is ast.ExprStmt
&& (stmts.last() as ast.ExprStmt).typ != ast.void_type {
g.indent++
for i, stmt in stmts {
if i == stmts.len - 1 {
expr_stmt := stmt as ast.ExprStmt
g.set_current_pos_as_last_stmt_pos()
g.write('*($mr_styp*) ${cvar_name}.data = ')
old_inside_opt_data := g.inside_opt_data
g.inside_opt_data = true
g.expr_with_cast(expr_stmt.expr, expr_stmt.typ, return_type.clear_flag(.optional))
g.inside_opt_data = old_inside_opt_data
g.writeln(';')
g.stmt_path_pos.delete_last()
} else {
g.stmt(stmt)
}
}
g.indent--
} else {
g.stmts(stmts)
if stmts.len > 0 && stmts.last() is ast.ExprStmt {
g.writeln(';')
}
}
g.or_expr_return_type = ast.void_type
} else if or_block.kind == .propagate_result
|| (or_block.kind == .propagate_option && return_type.has_flag(.result)) {
if g.file.mod.name == 'main' && (isnil(g.fn_decl) || g.fn_decl.is_main) {
// In main(), an `opt()!` call is sugar for `opt() or { panic(err) }`
err_msg := 'IError_name_table[${cvar_name}.err._typ]._method_msg(${cvar_name}.err._object)'
if g.pref.is_debug {
paline, pafile, pamod, pafn := g.panic_debug_info(or_block.pos)
g.writeln('panic_debug($paline, tos3("$pafile"), tos3("$pamod"), tos3("$pafn"), $err_msg);')
} else {
g.writeln('\tpanic_result_not_set($err_msg);')
}
} else if !isnil(g.fn_decl) && g.fn_decl.is_test {
g.gen_failing_error_propagation_for_test_fn(or_block, cvar_name)
} else {
// In ordinary functions, `opt()!` call is sugar for:
// `opt() or { return err }`
// Since we *do* return, first we have to ensure that
// the defered statements are generated.
g.write_defer_stmts()
// Now that option types are distinct we need a cast here
if g.fn_decl.return_type == ast.void_type {
g.writeln('\treturn;')
} else {
styp := g.typ(g.fn_decl.return_type)
err_obj := g.new_tmp_var()
g.writeln('\t$styp $err_obj;')
g.writeln('\tmemcpy(&$err_obj, &$cvar_name, sizeof($c.result_name));')
g.writeln('\treturn $err_obj;')
}
}
} else if or_block.kind == .propagate_option {
if g.file.mod.name == 'main' && (isnil(g.fn_decl) || g.fn_decl.is_main) {
// In main(), an `opt()?` call is sugar for `opt() or { panic(err) }`
err_msg := 'IError_name_table[${cvar_name}.err._typ]._method_msg(${cvar_name}.err._object)'
if g.pref.is_debug {
paline, pafile, pamod, pafn := g.panic_debug_info(or_block.pos)
g.writeln('panic_debug($paline, tos3("$pafile"), tos3("$pamod"), tos3("$pafn"), $err_msg );')
} else {
g.writeln('\tpanic_optional_not_set( $err_msg );')
}
} else if !isnil(g.fn_decl) && g.fn_decl.is_test {
g.gen_failing_error_propagation_for_test_fn(or_block, cvar_name)
} else {
// In ordinary functions, `opt()?` call is sugar for:
// `opt() or { return err }`
// Since we *do* return, first we have to ensure that
// the defered statements are generated.
g.write_defer_stmts()
// Now that option types are distinct we need a cast here
if g.fn_decl.return_type == ast.void_type {
g.writeln('\treturn;')
} else {
styp := g.typ(g.fn_decl.return_type)
err_obj := g.new_tmp_var()
g.writeln('\t$styp $err_obj;')
g.writeln('\tmemcpy(&$err_obj, &$cvar_name, sizeof(_option));')
g.writeln('\treturn $err_obj;')
}
}
}
g.writeln('}')
g.set_current_pos_as_last_stmt_pos()
}
[inline]
fn c_name(name_ string) string {
name := util.no_dots(name_)
if name in c.c_reserved_map {
return '_v_$name'
}
return name
}
fn (mut g Gen) type_default(typ_ ast.Type) string {
typ := g.unwrap_generic(typ_)
if typ.has_flag(.optional) || typ.has_flag(.result) {
return '{0}'
}
// Always set pointers to 0
if typ.is_ptr() && !typ.has_flag(.shared_f) {
return '0'
}
if typ.idx() < ast.string_type_idx {
// Default values for other types are not needed because of mandatory initialization
return '0'
}
sym := g.table.sym(typ)
match sym.kind {
.string {
return '(string){.str=(byteptr)"", .is_lit=1}'
}
.interface_, .sum_type, .array_fixed, .multi_return {
return '{0}'
}
.alias {
return g.type_default((sym.info as ast.Alias).parent_type)
}
.chan {
elem_type := sym.chan_info().elem_type
elemtypstr := g.typ(elem_type)
noscan := g.check_noscan(elem_type)
return 'sync__new_channel_st${noscan}(0, sizeof($elemtypstr))'
}
.array {
elem_typ := sym.array_info().elem_type
elem_sym := g.typ(elem_typ)
mut elem_type_str := util.no_dots(elem_sym)
if elem_type_str.starts_with('C__') {
elem_type_str = elem_type_str[3..]
}
noscan := g.check_noscan(elem_typ)
init_str := '__new_array${noscan}(0, 0, sizeof($elem_type_str))'
if typ.has_flag(.shared_f) {
atyp := '__shared__$sym.cname'
return '($atyp*)__dup_shared_array(&($atyp){.mtx = {0}, .val =$init_str}, sizeof($atyp))'
} else {
return init_str
}
}
.map {
info := sym.map_info()
key_typ := g.table.sym(info.key_type)
hash_fn, key_eq_fn, clone_fn, free_fn := g.map_fn_ptrs(key_typ)
noscan_key := g.check_noscan(info.key_type)
noscan_value := g.check_noscan(info.value_type)
mut noscan := if noscan_key.len != 0 || noscan_value.len != 0 { '_noscan' } else { '' }
if noscan.len != 0 {
if noscan_key.len != 0 {
noscan += '_key'
}
if noscan_value.len != 0 {
noscan += '_value'
}
}
init_str := 'new_map${noscan}(sizeof(${g.typ(info.key_type)}), sizeof(${g.typ(info.value_type)}), $hash_fn, $key_eq_fn, $clone_fn, $free_fn)'
if typ.has_flag(.shared_f) {
mtyp := '__shared__Map_${key_typ.cname}_${g.table.sym(info.value_type).cname}'
return '($mtyp*)__dup_shared_map(&($mtyp){.mtx = {0}, .val =$init_str}, sizeof($mtyp))'
} else {
return init_str
}
}
.struct_ {
mut has_none_zero := false
mut init_str := '{'
info := sym.info as ast.Struct
typ_is_shared_f := typ.has_flag(.shared_f)
if sym.language == .v && !typ_is_shared_f {
for field in info.fields {
field_sym := g.table.sym(field.typ)
if field.has_default_expr
|| field_sym.kind in [.array, .map, .string, .bool, .alias, .i8, .i16, .int, .i64, .u8, .u16, .u32, .u64, .char, .voidptr, .byteptr, .charptr, .struct_] {
field_name := c_name(field.name)
if field.has_default_expr {
mut expr_str := ''
if g.table.sym(field.typ).kind in [.sum_type, .interface_] {
expr_str = g.expr_string_with_cast(field.default_expr,
field.default_expr_typ, field.typ)
} else {
expr_str = g.expr_string(field.default_expr)
}
init_str += '.$field_name = $expr_str,'
} else {
mut zero_str := g.type_default(field.typ)
if zero_str == '{0}' {
if field_sym.info is ast.Struct && field_sym.language == .v {
if field_sym.info.fields.len == 0
&& field_sym.info.embeds.len == 0 {
zero_str = '{EMPTY_STRUCT_INITIALIZATION}'
}
}
}
init_str += '.$field_name = $zero_str,'
}
has_none_zero = true
}
}
}
if has_none_zero {
init_str += '}'
type_name := g.typ(typ)
init_str = '($type_name)' + init_str
} else {
init_str += '0}'
}
if typ.has_flag(.shared_f) {
styp := '__shared__${g.table.sym(typ).cname}'
return '($styp*)__dup${styp}(&($styp){.mtx = {0}, .val =$init_str}, sizeof($styp))'
} else {
return init_str
}
}
else {
return '0'
}
}
}
fn (g &Gen) get_all_test_function_names() []string {
mut tfuncs := []string{}
mut tsuite_begin := ''
mut tsuite_end := ''
for _, f in g.table.fns {
if !f.is_test {
continue
}
if f.name.ends_with('.testsuite_begin') {
tsuite_begin = f.name
continue
}
if f.name.contains('.test_') {
tfuncs << f.name
continue
}
if f.name.ends_with('.testsuite_end') {
tsuite_end = f.name
continue
}
}
mut all_tfuncs := []string{}
if tsuite_begin.len > 0 {
all_tfuncs << tsuite_begin
}
all_tfuncs << tfuncs
if tsuite_end.len > 0 {
all_tfuncs << tsuite_end
}
return all_tfuncs
}
fn (mut g Gen) size_of(node ast.SizeOf) {
typ := if node.typ == g.field_data_type { g.comptime_for_field_value.typ } else { node.typ }
node_typ := g.unwrap_generic(typ)
sym := g.table.sym(node_typ)
if sym.language == .v && sym.kind in [.placeholder, .any] {
g.error('unknown type `$sym.name`', node.pos)
}
if node.expr is ast.StringLiteral {
if node.expr.language == .c {
g.write('sizeof("$node.expr.val")')
return
}
}
styp := g.typ(node_typ)
g.write('sizeof(${util.no_dots(styp)})')
}
fn (mut g Gen) enum_val(node ast.EnumVal) {
// g.write('${it.mod}${it.enum_name}_$it.val')
// g.enum_expr(node)
styp := g.typ(g.table.unaliased_type(node.typ))
// && g.inside_switch
if g.pref.translated && node.typ.is_number() {
// Mostly in translated code, when C enums are used as ints in switches
sym := g.table.sym(node.typ)
g.write('/* $node enum val is_number $node.mod styp=$styp sym=$sym*/_const_main__$node.val')
} else {
g.write('${styp}__$node.val')
}
}
fn (mut g Gen) as_cast(node ast.AsCast) {
// Make sure the sum type can be cast to this type (the types
// are the same), otherwise panic.
// g.insert_before('
unwrapped_node_typ := g.unwrap_generic(node.typ)
styp := g.typ(unwrapped_node_typ)
sym := g.table.sym(unwrapped_node_typ)
mut expr_type_sym := g.table.sym(g.unwrap_generic(node.expr_type))
if mut expr_type_sym.info is ast.SumType {
dot := if node.expr_type.is_ptr() { '->' } else { '.' }
g.write('/* as */ *($styp*)__as_cast(')
g.write('(')
g.expr(node.expr)
g.write(')')
g.write(dot)
g.write('_$sym.cname,')
g.write('(')
g.expr(node.expr)
g.write(')')
g.write(dot)
// g.write('typ, /*expected:*/$node.typ)')
sidx := g.type_sidx(unwrapped_node_typ)
g.write('_typ, $sidx) /*expected idx: $sidx, name: $sym.name */ ')
// fill as cast name table
for variant in expr_type_sym.info.variants {
idx := u32(variant).str()
if idx in g.as_cast_type_names {
continue
}
variant_sym := g.table.sym(variant)
g.as_cast_type_names[idx] = variant_sym.name
}
} else if expr_type_sym.kind == .interface_ && sym.kind == .interface_ {
g.write('I_${expr_type_sym.cname}_as_I_${sym.cname}(')
if node.expr_type.is_ptr() {
g.write('*')
}
g.expr(node.expr)
g.write(')')
mut info := expr_type_sym.info as ast.Interface
if node.typ !in info.conversions {
left_variants := g.table.iface_types[expr_type_sym.name]
right_variants := g.table.iface_types[sym.name]
info.conversions[node.typ] = left_variants.filter(it in right_variants)
}
expr_type_sym.info = info
} else {
g.expr(node.expr)
}
}
fn (g Gen) as_cast_name_table() string {
if g.as_cast_type_names.len == 0 {
return 'new_array_from_c_array(1, 1, sizeof(VCastTypeIndexName), _MOV((VCastTypeIndexName[1]){(VCastTypeIndexName){.tindex = 0,.tname = _SLIT("unknown")}}));\n'
}
mut name_ast := strings.new_builder(1024)
casts_len := g.as_cast_type_names.len + 1
name_ast.writeln('new_array_from_c_array($casts_len, $casts_len, sizeof(VCastTypeIndexName), _MOV((VCastTypeIndexName[$casts_len]){')
name_ast.writeln('\t\t (VCastTypeIndexName){.tindex = 0, .tname = _SLIT("unknown")}')
for key, value in g.as_cast_type_names {
name_ast.writeln('\t\t, (VCastTypeIndexName){.tindex = $key, .tname = _SLIT("$value")}')
}
name_ast.writeln('\t}));\n')
return name_ast.str()
}
fn (g Gen) has_been_referenced(fn_name string) bool {
mut referenced := false
lock g.referenced_fns {
referenced = g.referenced_fns[fn_name]
}
return referenced
}
// Generates interface table and interface indexes
fn (mut g Gen) interface_table() string {
mut sb := strings.new_builder(100)
mut conversion_functions := strings.new_builder(100)
for isym in g.table.type_symbols {
if isym.kind != .interface_ {
continue
}
if isym.info !is ast.Interface {
// Do not remove this check, `isym.info` could be `&IError`.
// dump(isym)
continue
}
inter_info := isym.info as ast.Interface
if inter_info.is_generic {
continue
}
// interface_name is for example Speaker
interface_name := isym.cname
// generate a struct that references interface methods
methods_struct_name := 'struct _${interface_name}_interface_methods'
mut methods_struct_def := strings.new_builder(100)
methods_struct_def.writeln('$methods_struct_name {')
mut methodidx := map[string]int{}
for k, method in inter_info.methods {
methodidx[method.name] = k
ret_styp := g.typ(method.return_type)
methods_struct_def.write_string('\t$ret_styp (*_method_${c_name(method.name)})(void* _')
// the first param is the receiver, it's handled by `void*` above
for i in 1 .. method.params.len {
arg := method.params[i]
methods_struct_def.write_string(', ${g.typ(arg.typ)} $arg.name')
}
// TODO g.fn_args(method.args[1..])
methods_struct_def.writeln(');')
}
methods_struct_def.writeln('};')
// generate an array of the interface methods for the structs using the interface
// as well as case functions from the struct to the interface
mut methods_struct := strings.new_builder(100)
//
iname_table_length := inter_info.types.len
if iname_table_length == 0 {
// msvc can not process `static struct x[0] = {};`
methods_struct.writeln('$methods_struct_name ${interface_name}_name_table[1];')
} else {
if g.pref.build_mode != .build_module {
methods_struct.writeln('$methods_struct_name ${interface_name}_name_table[$iname_table_length] = {')
} else {
methods_struct.writeln('$methods_struct_name ${interface_name}_name_table[$iname_table_length];')
}
}
mut cast_functions := strings.new_builder(100)
mut methods_wrapper := strings.new_builder(100)
methods_wrapper.writeln('// Methods wrapper for interface "$interface_name"')
mut already_generated_mwrappers := map[string]int{}
iinidx_minimum_base := 1000 // Note: NOT 0, to avoid map entries set to 0 later, so `if already_generated_mwrappers[name] > 0 {` works.
mut current_iinidx := iinidx_minimum_base
for st in inter_info.types {
st_sym := g.table.sym(ast.mktyp(st))
// cctype is the Cleaned Concrete Type name, *without ptr*,
// i.e. cctype is always just Cat, not Cat_ptr:
cctype := g.cc_type(ast.mktyp(st), true)
$if debug_interface_table ? {
eprintln('>> interface name: $isym.name | concrete type: $st.debug() | st symname: $st_sym.name')
}
// Speaker_Cat_index = 0
interface_index_name := '_${interface_name}_${cctype}_index'
if already_generated_mwrappers[interface_index_name] > 0 {
continue
}
already_generated_mwrappers[interface_index_name] = current_iinidx
current_iinidx++
if isym.name != 'vweb.DbInterface' { // TODO remove this
// eprintln('>>> current_iinidx: ${current_iinidx-iinidx_minimum_base} | interface_index_name: $interface_index_name')
sb.writeln('static $interface_name I_${cctype}_to_Interface_${interface_name}($cctype* x);')
mut cast_struct := strings.new_builder(100)
cast_struct.writeln('($interface_name) {')
cast_struct.writeln('\t\t._$cctype = x,')
cast_struct.writeln('\t\t._typ = $interface_index_name,')
for field in inter_info.fields {
cname := c_name(field.name)
field_styp := g.typ(field.typ)
if _ := st_sym.find_field(field.name) {
cast_struct.writeln('\t\t.$cname = ($field_styp*)((char*)x + __offsetof_ptr(x, $cctype, $cname)),')
} else {
// the field is embedded in another struct
cast_struct.write_string('\t\t.$cname = ($field_styp*)((char*)x')
if st == ast.voidptr_type {
cast_struct.write_string('/*.... ast.voidptr_type */')
} else {
for embed_type in st_sym.struct_info().embeds {
embed_sym := g.table.sym(embed_type)
if _ := embed_sym.find_field(field.name) {
cast_struct.write_string(' + __offsetof_ptr(x, $cctype, $embed_sym.embed_name()) + __offsetof_ptr(x, $embed_sym.cname, $cname)')
break
}
}
}
cast_struct.writeln('),')
}
}
cast_struct.write_string('\t}')
cast_struct_str := cast_struct.str()
cast_functions.writeln('
// Casting functions for converting "$cctype" to interface "$interface_name"
static inline $interface_name I_${cctype}_to_Interface_${interface_name}($cctype* x) {
return $cast_struct_str;
}')
shared_fn_name := 'I___shared__${cctype}_to_shared_Interface___shared__$interface_name'
// Avoid undefined types errors by only generating the converters that are referenced:
if g.has_been_referenced(shared_fn_name) {
mut cast_shared_struct := strings.new_builder(100)
cast_shared_struct.writeln('(__shared__$interface_name) {')
cast_shared_struct.writeln('\t\t.mtx = {0},')
cast_shared_struct.writeln('\t\t.val = {')
cast_shared_struct.writeln('\t\t\t._$cctype = &x->val,')
cast_shared_struct.writeln('\t\t\t._typ = $interface_index_name,')
cast_shared_struct.writeln('\t\t}')
cast_shared_struct.write_string('\t}')
cast_shared_struct_str := cast_shared_struct.str()
cast_functions.writeln('
// Casting functions for converting "__shared__$cctype" to interface "__shared__$interface_name"
static inline __shared__$interface_name ${shared_fn_name}(__shared__$cctype* x) {
return $cast_shared_struct_str;
}')
}
}
if g.pref.build_mode != .build_module {
methods_struct.writeln('\t{')
}
if st == ast.voidptr_type {
for mname, _ in methodidx {
if g.pref.build_mode != .build_module {
methods_struct.writeln('\t\t._method_${c_name(mname)} = (void*) 0,')
}
}
}
mut methods := st_sym.methods
method_names := methods.map(it.name)
match st_sym.info {
ast.Struct, ast.Interface, ast.SumType {
if st_sym.info.parent_type.has_flag(.generic) {
parent_sym := g.table.sym(st_sym.info.parent_type)
for method in parent_sym.methods {
if method.name in methodidx {
methods << st_sym.find_method_with_generic_parent(method.name) or {
continue
}
}
}
}
}
else {}
}
t_methods := g.table.get_embed_methods(st_sym)
for t_method in t_methods {
if t_method.name !in methods.map(it.name) {
methods << t_method
}
}
for method in methods {
mut name := method.name
if inter_info.parent_type.has_flag(.generic) {
parent_sym := g.table.sym(inter_info.parent_type)
match parent_sym.info {
ast.Struct, ast.Interface, ast.SumType {
name = g.generic_fn_name(parent_sym.info.concrete_types, method.name,
false)
}
else {}
}
}
if method.name !in methodidx {
// a method that is not part of the interface should be just skipped
continue
}
// .speak = Cat_speak
if st_sym.info is ast.Struct {
if st_sym.info.parent_type.has_flag(.generic) {
name = g.generic_fn_name(st_sym.info.concrete_types, method.name,
false)
}
}
styp := g.cc_type(method.params[0].typ, true)
mut method_call := '${styp}_$name'
if !method.params[0].typ.is_ptr() {
method_call = '${cctype}_$name'
// inline void Cat_speak_Interface_Animal_method_wrapper(Cat c) { return Cat_speak(*c); }
iwpostfix := '_Interface_${interface_name}_method_wrapper'
methods_wrapper.write_string('static inline ${g.typ(method.return_type)} ${cctype}_$name${iwpostfix}(')
//
params_start_pos := g.out.len
mut params := method.params.clone()
// hack to mutate typ
params[0] = ast.Param{
...params[0]
typ: st.set_nr_muls(1)
}
fargs, _, _ := g.fn_decl_params(params, voidptr(0), false)
mut parameter_name := g.out.cut_last(g.out.len - params_start_pos)
if st.is_ptr() {
parameter_name = parameter_name.trim_string_left('__shared__')
}
methods_wrapper.write_string(parameter_name)
methods_wrapper.writeln(') {')
methods_wrapper.write_string('\t')
if method.return_type != ast.void_type {
methods_wrapper.write_string('return ')
}
_, embed_types := g.table.find_method_from_embeds(st_sym, method.name) or {
ast.Fn{}, []ast.Type{}
}
if embed_types.len > 0 && method.name !in method_names {
embed_sym := g.table.sym(embed_types.last())
method_name := '${embed_sym.cname}_$method.name'
methods_wrapper.write_string('${method_name}(${fargs[0]}')
for idx_embed, embed in embed_types {
esym := g.table.sym(embed)
if idx_embed == 0 || embed_types[idx_embed - 1].is_any_kind_of_pointer() {
methods_wrapper.write_string('->$esym.embed_name()')
} else {
methods_wrapper.write_string('.$esym.embed_name()')
}
}
if fargs.len > 1 {
methods_wrapper.write_string(', ')
}
args := fargs[1..].join(', ')
methods_wrapper.writeln('$args);')
} else {
if parameter_name.starts_with('__shared__') {
methods_wrapper.writeln('${method_call}(${fargs.join(', ')}->val);')
} else {
methods_wrapper.writeln('${method_call}(*${fargs.join(', ')});')
}
}
methods_wrapper.writeln('}')
// .speak = Cat_speak_Interface_Animal_method_wrapper
method_call += iwpostfix
}
if g.pref.build_mode != .build_module && st != ast.voidptr_type {
methods_struct.writeln('\t\t._method_${c_name(method.name)} = (void*) $method_call,')
}
}
// >> Hack to allow old style custom error implementations
// TODO: remove once deprecation period for `IError` methods has ended
// fix MSVC not handling empty struct inits
if methods.len == 0 && isym.idx == ast.error_type_idx {
methods_struct.writeln('\t\t._method_msg = NULL,')
methods_struct.writeln('\t\t._method_code = NULL,')
}
// <<
if g.pref.build_mode != .build_module {
methods_struct.writeln('\t},')
}
iin_idx := already_generated_mwrappers[interface_index_name] - iinidx_minimum_base
if g.pref.build_mode != .build_module {
sb.writeln('const int $interface_index_name = $iin_idx;')
} else {
sb.writeln('extern const int $interface_index_name;')
}
}
for vtyp, variants in inter_info.conversions {
vsym := g.table.sym(vtyp)
conversion_functions.write_string('static inline bool I_${interface_name}_is_I_${vsym.cname}($interface_name x) {\n\treturn ')
for i, variant in variants {
variant_sym := g.table.sym(variant)
if i > 0 {
conversion_functions.write_string(' || ')
}
conversion_functions.write_string('(x._typ == _${interface_name}_${variant_sym.cname}_index)')
}
conversion_functions.writeln(';\n}')
conversion_functions.writeln('static inline $vsym.cname I_${interface_name}_as_I_${vsym.cname}($interface_name x) {')
for variant in variants {
variant_sym := g.table.sym(variant)
conversion_functions.writeln('\tif (x._typ == _${interface_name}_${variant_sym.cname}_index) return I_${variant_sym.cname}_to_Interface_${vsym.cname}(x._$variant_sym.cname);')
}
pmessage := 'string__plus(string__plus(tos3("`as_cast`: cannot convert "), tos3(v_typeof_interface_${interface_name}(x._typ))), tos3(" to ${util.strip_main_name(vsym.name)}"))'
if g.pref.is_debug {
// TODO: actually return a valid position here
conversion_functions.write_string('\tpanic_debug(1, tos3("builtin.v"), tos3("builtin"), tos3("__as_cast"), ')
conversion_functions.write_string(pmessage)
conversion_functions.writeln(');')
} else {
conversion_functions.write_string('\t_v_panic(')
conversion_functions.write_string(pmessage)
conversion_functions.writeln(');')
}
conversion_functions.writeln('\treturn ($vsym.cname){0};')
conversion_functions.writeln('}')
}
sb.writeln('// ^^^ number of types for interface $interface_name: ${current_iinidx - iinidx_minimum_base}')
if iname_table_length == 0 {
methods_struct.writeln('')
} else {
if g.pref.build_mode != .build_module {
methods_struct.writeln('};')
}
}
// add line return after interface index declarations
sb.writeln('')
if inter_info.methods.len > 0 {
sb.writeln(methods_wrapper.str())
sb.writeln(methods_struct_def.str())
sb.writeln(methods_struct.str())
}
sb.writeln(cast_functions.str())
}
sb.writeln(conversion_functions.str())
return sb.str()
}
fn (mut g Gen) panic_debug_info(pos token.Pos) (int, string, string, string) {
paline := pos.line_nr + 1
if isnil(g.fn_decl) {
return paline, '', 'main', 'C._vinit'
}
pafile := g.fn_decl.file.replace('\\', '/')
pafn := g.fn_decl.name.after('.')
pamod := g.fn_decl.modname()
return paline, pafile, pamod, pafn
}
pub fn get_guarded_include_text(iname string, imessage string) string {
res := '
|#if defined(__has_include)
|
|#if __has_include($iname)
|#include $iname
|#else
|#error VERROR_MESSAGE $imessage
|#endif
|
|#else
|#include $iname
|#endif
'.strip_margin()
return res
}
fn (mut g Gen) trace(fbase string, message string) {
if g.file.path_base == fbase {
println('> g.trace | ${fbase:-10s} | $message')
}
}
pub fn (mut g Gen) get_array_depth(el_typ ast.Type) int {
typ := g.unwrap_generic(el_typ)
sym := g.table.final_sym(typ)
if sym.kind == .array {
info := sym.info as ast.Array
return 1 + g.get_array_depth(info.elem_type)
} else {
return 0
}
}
// returns true if `t` includes any pointer(s) - during garbage collection heap regions
// that contain no pointers do not have to be scanned
pub fn (mut g Gen) contains_ptr(el_typ ast.Type) bool {
if el_typ.is_ptr() || el_typ.is_pointer() {
return true
}
typ := g.unwrap_generic(el_typ)
if typ.is_ptr() {
return true
}
sym := g.table.final_sym(typ)
if sym.language != .v {
return true
}
match sym.kind {
.i8, .i16, .int, .i64, .u8, .u16, .u32, .u64, .f32, .f64, .char, .rune, .bool, .enum_ {
return false
}
.array_fixed {
info := sym.info as ast.ArrayFixed
return g.contains_ptr(info.elem_type)
}
.struct_ {
info := sym.info as ast.Struct
for embed in info.embeds {
if g.contains_ptr(embed) {
return true
}
}
for field in info.fields {
if g.contains_ptr(field.typ) {
return true
}
}
return false
}
.aggregate {
info := sym.info as ast.Aggregate
for atyp in info.types {
if g.contains_ptr(atyp) {
return true
}
}
return false
}
.multi_return {
info := sym.info as ast.MultiReturn
for mrtyp in info.types {
if g.contains_ptr(mrtyp) {
return true
}
}
return false
}
else {
return true
}
}
}
fn (mut g Gen) check_noscan(elem_typ ast.Type) string {
if g.pref.gc_mode in [.boehm_full_opt, .boehm_incr_opt] {
if !g.contains_ptr(elem_typ) {
return '_noscan'
}
}
return ''
}