217 lines
5.1 KiB
V
217 lines
5.1 KiB
V
module math
|
|
|
|
// The original C code, the long comment, and the constants below were
|
|
// from http://netlib.sandia.gov/cephes/cmath/atan.c, available from
|
|
// http://www.netlib.org/cephes/ctgz.
|
|
// The go code is a version of the original C.
|
|
//
|
|
// atan.c
|
|
// Inverse circular tangent (arctangent)
|
|
//
|
|
// SYNOPSIS:
|
|
// double x, y, atan()
|
|
// y = atan( x )
|
|
//
|
|
// DESCRIPTION:
|
|
// Returns radian angle between -pi/2.0 and +pi/2.0 whose tangent is x.
|
|
//
|
|
// Range reduction is from three intervals into the interval from zero to 0.66.
|
|
// The approximant uses a rational function of degree 4/5 of the form
|
|
// x + x**3 P(x)/Q(x).
|
|
//
|
|
// ACCURACY:
|
|
// Relative error:
|
|
// arithmetic domain # trials peak rms
|
|
// DEC -10, 10 50000 2.4e-17 8.3e-18
|
|
// IEEE -10, 10 10^6 1.8e-16 5.0e-17
|
|
//
|
|
// Cephes Math Library Release 2.8: June, 2000
|
|
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
|
|
//
|
|
// The readme file at http://netlib.sandia.gov/cephes/ says:
|
|
// Some software in this archive may be from the book _Methods and
|
|
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
|
|
// International, 1989) or from the Cephes Mathematical Library, a
|
|
// commercial product. In either event, it is copyrighted by the author.
|
|
// What you see here may be used freely but it comes with no support or
|
|
// guarantee.
|
|
//
|
|
// The two known misprints in the book are repaired here in the
|
|
// source listings for the gamma function and the incomplete beta
|
|
// integral.
|
|
//
|
|
// Stephen L. Moshier
|
|
// moshier@na-net.ornl.gov
|
|
// pi/2.0 = PIO2 + morebits
|
|
// tan3pio8 = tan(3*pi/8)
|
|
|
|
const (
|
|
morebits = 6.123233995736765886130e-17
|
|
tan3pio8 = 2.41421356237309504880
|
|
)
|
|
|
|
// xatan evaluates a series valid in the range [0, 0.66].
|
|
[inline]
|
|
fn xatan(x f64) f64 {
|
|
xatan_p0 := -8.750608600031904122785e-01
|
|
xatan_p1 := -1.615753718733365076637e+01
|
|
xatan_p2 := -7.500855792314704667340e+01
|
|
xatan_p3 := -1.228866684490136173410e+02
|
|
xatan_p4 := -6.485021904942025371773e+01
|
|
xatan_q0 := 2.485846490142306297962e+01
|
|
xatan_q1 := 1.650270098316988542046e+02
|
|
xatan_q2 := 4.328810604912902668951e+02
|
|
xatan_q3 := 4.853903996359136964868e+02
|
|
xatan_q4 := 1.945506571482613964425e+02
|
|
mut z := x * x
|
|
z = z * ((((xatan_p0 * z + xatan_p1) * z + xatan_p2) * z + xatan_p3) * z + xatan_p4) / (((((z +
|
|
xatan_q0) * z + xatan_q1) * z + xatan_q2) * z + xatan_q3) * z + xatan_q4)
|
|
z = x * z + x
|
|
return z
|
|
}
|
|
|
|
// satan reduces its argument (known to be positive)
|
|
// to the range [0, 0.66] and calls xatan.
|
|
[inline]
|
|
fn satan(x f64) f64 {
|
|
if x <= 0.66 {
|
|
return xatan(x)
|
|
}
|
|
if x > math.tan3pio8 {
|
|
return pi / 2.0 - xatan(1.0 / x) + f64(math.morebits)
|
|
}
|
|
return pi / 4 + xatan((x - 1.0) / (x + 1.0)) + 0.5 * f64(math.morebits)
|
|
}
|
|
|
|
// atan returns the arctangent, in radians, of x.
|
|
//
|
|
// special cases are:
|
|
// atan(±0) = ±0
|
|
// atan(±inf) = ±pi/2.0
|
|
pub fn atan(x f64) f64 {
|
|
if x == 0 {
|
|
return x
|
|
}
|
|
if x > 0 {
|
|
return satan(x)
|
|
}
|
|
return -satan(-x)
|
|
}
|
|
|
|
// atan2 returns the arc tangent of y/x, using
|
|
// the signs of the two to determine the quadrant
|
|
// of the return value.
|
|
//
|
|
// special cases are (in order):
|
|
// atan2(y, nan) = nan
|
|
// atan2(nan, x) = nan
|
|
// atan2(+0, x>=0) = +0
|
|
// atan2(-0, x>=0) = -0
|
|
// atan2(+0, x<=-0) = +pi
|
|
// atan2(-0, x<=-0) = -pi
|
|
// atan2(y>0, 0) = +pi/2.0
|
|
// atan2(y<0, 0) = -pi/2.0
|
|
// atan2(+inf, +inf) = +pi/4
|
|
// atan2(-inf, +inf) = -pi/4
|
|
// atan2(+inf, -inf) = 3pi/4
|
|
// atan2(-inf, -inf) = -3pi/4
|
|
// atan2(y, +inf) = 0
|
|
// atan2(y>0, -inf) = +pi
|
|
// atan2(y<0, -inf) = -pi
|
|
// atan2(+inf, x) = +pi/2.0
|
|
// atan2(-inf, x) = -pi/2.0
|
|
pub fn atan2(y f64, x f64) f64 {
|
|
// special cases
|
|
if is_nan(y) || is_nan(x) {
|
|
return nan()
|
|
}
|
|
if y == 0.0 {
|
|
if x >= 0 && !signbit(x) {
|
|
return copysign(0, y)
|
|
}
|
|
return copysign(pi, y)
|
|
}
|
|
if x == 0.0 {
|
|
return copysign(pi / 2.0, y)
|
|
}
|
|
if is_inf(x, 0) {
|
|
if is_inf(x, 1) {
|
|
if is_inf(y, 0) {
|
|
return copysign(pi / 4, y)
|
|
}
|
|
return copysign(0, y)
|
|
}
|
|
if is_inf(y, 0) {
|
|
return copysign(3.0 * pi / 4.0, y)
|
|
}
|
|
return copysign(pi, y)
|
|
}
|
|
if is_inf(y, 0) {
|
|
return copysign(pi / 2.0, y)
|
|
}
|
|
// Call atan and determine the quadrant.
|
|
q := atan(y / x)
|
|
if x < 0 {
|
|
if q <= 0 {
|
|
return q + pi
|
|
}
|
|
return q - pi
|
|
}
|
|
return q
|
|
}
|
|
|
|
/*
|
|
Floating-point arcsine and arccosine.
|
|
|
|
They are implemented by computing the arctangent
|
|
after appropriate range reduction.
|
|
*/
|
|
|
|
// asin returns the arcsine, in radians, of x.
|
|
//
|
|
// special cases are:
|
|
// asin(±0) = ±0
|
|
// asin(x) = nan if x < -1 or x > 1
|
|
pub fn asin(x_ f64) f64 {
|
|
mut x := x_
|
|
if x == 0.0 {
|
|
return x // special case
|
|
}
|
|
mut sign := false
|
|
if x < 0.0 {
|
|
x = -x
|
|
sign = true
|
|
}
|
|
if x > 1.0 {
|
|
return nan() // special case
|
|
}
|
|
mut temp := sqrt(1.0 - x * x)
|
|
if x > 0.7 {
|
|
temp = pi / 2.0 - satan(temp / x)
|
|
} else {
|
|
temp = satan(x / temp)
|
|
}
|
|
if sign {
|
|
temp = -temp
|
|
}
|
|
return temp
|
|
}
|
|
|
|
// acos returns the arccosine, in radians, of x.
|
|
//
|
|
// special case is:
|
|
// acos(x) = nan if x < -1 or x > 1
|
|
[inline]
|
|
pub fn acos(x f64) f64 {
|
|
if (x < -1.0) || (x > 1.0) {
|
|
return nan()
|
|
}
|
|
if x > 0.5 {
|
|
return f64(2.0) * asin(sqrt(0.5 - 0.5 * x))
|
|
}
|
|
mut z := pi / f64(4.0) - asin(x)
|
|
z = z + math.morebits
|
|
z = z + pi / f64(4.0)
|
|
return z
|
|
}
|