v/examples/sokol/06_obj_viewer/obj/rend.v

250 lines
8.0 KiB
V

/**********************************************************************
*
* .obj loader
*
* Copyright (c) 2021 Dario Deledda. All rights reserved.
* Use of this source code is governed by an MIT license
* that can be found in the LICENSE file.
*
* TODO:
**********************************************************************/
module obj
import sokol.gfx
import gg.m4
import math
import stbi
/******************************************************************************
* Texture functions
******************************************************************************/
pub fn create_texture(w int, h int, buf &byte) C.sg_image {
sz := w * h * 4
mut img_desc := C.sg_image_desc{
width: w
height: h
num_mipmaps: 0
min_filter: .linear
mag_filter: .linear
// usage: .dynamic
wrap_u: .clamp_to_edge
wrap_v: .clamp_to_edge
label: &byte(0)
d3d11_texture: 0
}
// comment if .dynamic is enabled
img_desc.content.subimage[0][0] = C.sg_subimage_content{
ptr: buf
size: sz
}
sg_img := C.sg_make_image(&img_desc)
return sg_img
}
pub fn destroy_texture(sg_img C.sg_image) {
C.sg_destroy_image(sg_img)
}
pub fn load_texture(file_name string) C.sg_image {
buffer := obj.read_bytes_from_file(file_name)
stbi.set_flip_vertically_on_load(true)
img := stbi.load_from_memory(buffer.data, buffer.len) or {
eprintln("Texure file: [$file_name] ERROR!")
exit(0)
}
res := create_texture(int(img.width), int(img.height), img.data)
img.free()
return res
}
/******************************************************************************
* Pipeline
******************************************************************************/
pub fn (mut obj_part ObjPart) create_pipeline(in_part []int, shader C.sg_shader, texture C.sg_image) Render_data {
mut res := Render_data{}
obj_buf := obj_part.get_buffer(in_part)
res.n_vert = obj_buf.n_vertex
res.material = obj_part.part[in_part[0]].material
// vertex buffer
mut vert_buffer_desc := C.sg_buffer_desc{}
unsafe { C.memset(&vert_buffer_desc, 0, sizeof(vert_buffer_desc)) }
vert_buffer_desc.size = obj_buf.vbuf.len * int(sizeof(Vertex_pnct))
vert_buffer_desc.content = &byte(obj_buf.vbuf.data)
vert_buffer_desc.@type = .vertexbuffer
vert_buffer_desc.label = 'vertbuf_part_${in_part:03}'.str
vbuf := gfx.make_buffer(&vert_buffer_desc)
// index buffer
mut index_buffer_desc := C.sg_buffer_desc{}
unsafe {C.memset(&index_buffer_desc, 0, sizeof(index_buffer_desc))}
index_buffer_desc.size = obj_buf.ibuf.len * int(sizeof(u32))
index_buffer_desc.content = &byte(obj_buf.ibuf.data)
index_buffer_desc.@type = .indexbuffer
index_buffer_desc.label = "indbuf_part_${in_part:03}".str
ibuf := gfx.make_buffer(&index_buffer_desc)
mut pipdesc := C.sg_pipeline_desc{}
unsafe { C.memset(&pipdesc, 0, sizeof(pipdesc)) }
pipdesc.layout.buffers[0].stride = int(sizeof(Vertex_pnct))
// the constants [C.ATTR_vs_a_Position, C.ATTR_vs_a_Color, C.ATTR_vs_a_Texcoord0] are generated by sokol-shdc
pipdesc.layout.attrs[C.ATTR_vs_a_Position].format = .float3 // x,y,z as f32
pipdesc.layout.attrs[C.ATTR_vs_a_Normal ].format = .float3 // x,y,z as f32
pipdesc.layout.attrs[C.ATTR_vs_a_Color ].format = .ubyte4n // color as u32
pipdesc.layout.attrs[C.ATTR_vs_a_Texcoord0 ].format = .float2 // u,v as f32
// pipdesc.layout.attrs[C.ATTR_vs_a_Texcoord0].format = .short2n // u,v as u16
pipdesc.index_type = .uint32
pipdesc.blend.enabled = true
pipdesc.blend.src_factor_rgb = gfx.BlendFactor(C.SG_BLENDFACTOR_SRC_ALPHA)
pipdesc.blend.dst_factor_rgb = gfx.BlendFactor(C.SG_BLENDFACTOR_ONE_MINUS_SRC_ALPHA)
pipdesc.depth_stencil = C.sg_depth_stencil_state{
depth_write_enabled: true
depth_compare_func: gfx.CompareFunc(C.SG_COMPAREFUNC_LESS_EQUAL)
}
pipdesc.rasterizer = C.sg_rasterizer_state{
cull_mode: .front //.back
}
pipdesc.label = 'pip_part_${in_part:03}'.str
// shader
pipdesc.shader = shader
res.bind.vertex_buffers[0] = vbuf
res.bind.index_buffer = ibuf
res.bind.fs_images[C.SLOT_tex] = texture
res.pipeline = gfx.make_pipeline(&pipdesc)
//println('Buffers part [$in_part] init done!')
return res
}
/******************************************************************************
* Render functions
******************************************************************************/
// agregate all the part by materials
pub fn (mut obj_part ObjPart) init_render_data(texture C.sg_image) {
// create shader
// One shader for all the model
shader := gfx.make_shader(C.gouraud_shader_desc())
//shader := gfx.make_shader(C.gouraud_shader_desc(gfx.query_backend()))
mut part_dict := map[string][]int{}
for i, p in obj_part.part {
if p.faces.len > 0 {
part_dict[p.material] << i
}
}
obj_part.rend_data.clear()
//println("Material dict: ${obj_part.mat_map.keys()}")
for k, v in part_dict {
//println("$k => Parts $v")
mut txt := texture
if k in obj_part.mat_map {
mat_map := obj_part.mat[obj_part.mat_map[k]]
if 'map_Kd' in mat_map.maps {
file_name := mat_map.maps['map_Kd']
if file_name in obj_part.texture {
txt = obj_part.texture[file_name]
//println("Texture [${file_name}] => from CACHE")
} else {
txt = obj.load_texture(file_name)
obj_part.texture[file_name] = txt
//println("Texture [${file_name}] => LOADED")
}
}
}
//key := obj_part.texture.keys()[0]
//obj_part.rend_data << obj_part.create_pipeline(v, shader, obj_part.texture[key])
obj_part.rend_data << obj_part.create_pipeline(v, shader, txt)
}
//println("Texture array len: ${obj_part.texture.len}")
//println("Calc bounding box.")
obj_part.calc_bbox()
println("init_render_data DONE!")
}
pub fn (obj_part ObjPart) bind_and_draw(rend_data_index int, in_data Shader_data) u32 {
// apply the pipline and bindings
mut part_render_data := obj_part.rend_data[rend_data_index]
// pass light position
mut tmp_fs_params := obj.Tmp_fs_param{}
tmp_fs_params.ligth = in_data.fs_data.ligth
if part_render_data.material in obj_part.mat_map {
mat_index := obj_part.mat_map[part_render_data.material]
mat := obj_part.mat[mat_index]
// ambient
tmp_fs_params.ka = in_data.fs_data.ka
if 'Ka' in mat.ks {
tmp_fs_params.ka = mat.ks['Ka']
}
// specular
tmp_fs_params.ks = in_data.fs_data.ks
if 'Ks' in mat.ks {
tmp_fs_params.ks = mat.ks['Ks']
}
// specular exponent Ns
if 'Ns' in mat.ns {
tmp_fs_params.ks.e[3] = mat.ns['Ns'] / 1000.0
} else {
// defautl value is 10
tmp_fs_params.ks.e[3] = f32(10) / 1000.0
}
// diffuse
tmp_fs_params.kd = in_data.fs_data.kd
if 'Kd' in mat.ks {
tmp_fs_params.kd = mat.ks['Kd']
}
// alpha/transparency
if 'Tr' in mat.ns {
tmp_fs_params.kd.e[3] = mat.ns['Tr']
}
}
gfx.apply_pipeline(part_render_data.pipeline)
gfx.apply_bindings(part_render_data.bind)
gfx.apply_uniforms(C.SG_SHADERSTAGE_VS, C.SLOT_vs_params, in_data.vs_data, in_data.vs_len)
gfx.apply_uniforms(C.SG_SHADERSTAGE_FS, C.SLOT_fs_params, &tmp_fs_params, in_data.fs_len)
gfx.draw(0, int(part_render_data.n_vert), 1)
return part_render_data.n_vert
}
pub fn (obj_part ObjPart) bind_and_draw_all(in_data Shader_data) u32 {
mut n_vert := u32(0)
//println("Parts: ${obj_part.rend_data.len}")
for i, _ in obj_part.rend_data {
n_vert += obj_part.bind_and_draw(i,in_data)
}
return n_vert
}
pub fn (mut obj_part ObjPart) calc_bbox() {
obj_part.max = m4.Vec4{e:[f32(-math.max_f32), -math.max_f32, -math.max_f32, 0]!}
obj_part.min = m4.Vec4{e:[f32( math.max_f32), math.max_f32, math.max_f32, 0]!}
for v in obj_part.v {
if v.e[0] > obj_part.max.e[0] { obj_part.max.e[0] = v.e[0] }
if v.e[1] > obj_part.max.e[1] { obj_part.max.e[1] = v.e[1] }
if v.e[2] > obj_part.max.e[2] { obj_part.max.e[2] = v.e[2] }
if v.e[0] < obj_part.min.e[0] { obj_part.min.e[0] = v.e[0] }
if v.e[1] < obj_part.min.e[1] { obj_part.min.e[1] = v.e[1] }
if v.e[2] < obj_part.min.e[2] { obj_part.min.e[2] = v.e[2] }
}
val1 := obj_part.max.mod3()
val2 := obj_part.min.mod3()
if val1 > val2 { obj_part.radius = f32(val1) } else { obj_part.radius = f32(val2) }
//println("BBox: ${obj_part.min} <=> ${obj_part.max}\nRadius: ${obj_part.radius}")
}