53 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			53 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			V
		
	
	
| module math
 | |
| 
 | |
| // cbrt returns the cube root of a.
 | |
| //
 | |
| // special cases are:
 | |
| // cbrt(±0) = ±0
 | |
| // cbrt(±inf) = ±inf
 | |
| // cbrt(nan) = nan
 | |
| pub fn cbrt(a f64) f64 {
 | |
| 	mut x := a
 | |
| 	b1 := 715094163 // (682-0.03306235651)*2**20
 | |
| 	b2 := 696219795 // (664-0.03306235651)*2**20
 | |
| 	c := 5.42857142857142815906e-01 // 19/35     = 0x3FE15F15F15F15F1
 | |
| 	d := -7.05306122448979611050e-01 // -864/1225 = 0xBFE691DE2532C834
 | |
| 	e_ := 1.41428571428571436819e+00 // 99/70     = 0x3FF6A0EA0EA0EA0F
 | |
| 	f := 1.60714285714285720630e+00 // 45/28     = 0x3FF9B6DB6DB6DB6E
 | |
| 	g := 3.57142857142857150787e-01 // 5/14      = 0x3FD6DB6DB6DB6DB7
 | |
| 	smallest_normal := 2.22507385850720138309e-308 // 2**-1022  = 0x0010000000000000
 | |
| 	if x == 0.0 || is_nan(x) || is_inf(x, 0) {
 | |
| 		return x
 | |
| 	}
 | |
| 	mut sign := false
 | |
| 	if x < 0 {
 | |
| 		x = -x
 | |
| 		sign = true
 | |
| 	}
 | |
| 	// rough cbrt to 5 bits
 | |
| 	mut t := f64_from_bits(f64_bits(x) / u64(3 + (u64(b1) << 32)))
 | |
| 	if x < smallest_normal {
 | |
| 		// subnormal number
 | |
| 		t = f64(u64(1) << 54) // set t= 2**54
 | |
| 		t *= x
 | |
| 		t = f64_from_bits(f64_bits(t) / u64(3 + (u64(b2) << 32)))
 | |
| 	}
 | |
| 	// new cbrt to 23 bits
 | |
| 	mut r := t * t / x
 | |
| 	mut s := c + r * t
 | |
| 	t *= g + f / (s + e_ + d / s)
 | |
| 	// chop to 22 bits, make larger than cbrt(x)
 | |
| 	t = f64_from_bits(f64_bits(t) & (u64(0xffffffffc) << 28) + (u64(1) << 30))
 | |
| 	// one step newton iteration to 53 bits with error less than 0.667ulps
 | |
| 	s = t * t // t*t is exact
 | |
| 	r = x / s
 | |
| 	w := t + t
 | |
| 	r = (r - t) / (w + r) // r-s is exact
 | |
| 	t = t + t * r
 | |
| 	// restore the sign bit
 | |
| 	if sign {
 | |
| 		t = -t
 | |
| 	}
 | |
| 	return t
 | |
| }
 |