77 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			77 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			V
		
	
	
| module math
 | |
| 
 | |
| pub fn log_n(x f64, b f64) f64 {
 | |
| 	y := log(x)
 | |
| 	z := log(b)
 | |
| 	return y / z
 | |
| }
 | |
| 
 | |
| // log10 returns the decimal logarithm of x.
 | |
| // The special cases are the same as for log.
 | |
| pub fn log10(x f64) f64 {
 | |
| 	return log(x) * (1.0 / ln10)
 | |
| }
 | |
| 
 | |
| // log2 returns the binary logarithm of x.
 | |
| // The special cases are the same as for log.
 | |
| pub fn log2(x f64) f64 {
 | |
| 	frac, exp := frexp(x)
 | |
| 	// Make sure exact powers of two give an exact answer.
 | |
| 	// Don't depend on log(0.5)*(1/ln2)+exp being exactly exp-1.
 | |
| 	if frac == 0.5 {
 | |
| 		return f64(exp - 1)
 | |
| 	}
 | |
| 	return log(frac) * (1.0 / ln2) + f64(exp)
 | |
| }
 | |
| 
 | |
| pub fn log1p(x f64) f64 {
 | |
| 	y := 1.0 + x
 | |
| 	z := y - 1.0
 | |
| 	return log(y) - (z - x) / y // cancels errors with IEEE arithmetic
 | |
| }
 | |
| 
 | |
| // log_b returns the binary exponent of x.
 | |
| //
 | |
| // special cases are:
 | |
| // log_b(±inf) = +inf
 | |
| // log_b(0) = -inf
 | |
| // log_b(nan) = nan
 | |
| pub fn log_b(x f64) f64 {
 | |
| 	if x == 0 {
 | |
| 		return inf(-1)
 | |
| 	}
 | |
| 	if is_inf(x, 0) {
 | |
| 		return inf(1)
 | |
| 	}
 | |
| 	if is_nan(x) {
 | |
| 		return x
 | |
| 	}
 | |
| 	return f64(ilog_b_(x))
 | |
| }
 | |
| 
 | |
| // ilog_b returns the binary exponent of x as an integer.
 | |
| //
 | |
| // special cases are:
 | |
| // ilog_b(±inf) = max_i32
 | |
| // ilog_b(0) = min_i32
 | |
| // ilog_b(nan) = max_i32
 | |
| pub fn ilog_b(x f64) int {
 | |
| 	if x == 0 {
 | |
| 		return min_i32
 | |
| 	}
 | |
| 	if is_nan(x) {
 | |
| 		return max_i32
 | |
| 	}
 | |
| 	if is_inf(x, 0) {
 | |
| 		return max_i32
 | |
| 	}
 | |
| 	return ilog_b_(x)
 | |
| }
 | |
| 
 | |
| // ilog_b returns the binary exponent of x. It assumes x is finite and
 | |
| // non-zero.
 | |
| fn ilog_b_(x_ f64) int {
 | |
| 	x, exp := normalize(x_)
 | |
| 	return int((f64_bits(x) >> shift) & mask) - bias + exp
 | |
| }
 |