v/vlib/builtin/map.v

393 lines
10 KiB
V

// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module builtin
import (
strings
hash.wyhash
)
const (
// Number of bits from the hash stored for each entry
hashbits = 24
// Number of bits from the hash stored for rehasing
cached_hashbits = 16
// Initial log-number of buckets in the hashtable
init_log_capicity = 5
// Initial number of buckets in the hashtable
init_capicity = 1<<init_log_capicity
// Initial load-factor
init_load_factor = 0.8
// Initial range cap
init_range_cap = init_capicity - 1
// Bitmask to select all the hashbits
hash_mask = u32(0x00FFFFFF)
// Used for incrementing the probe-count
probe_inc = u32(0x01000000)
// Bitmask for maximum probe count
max_probe = u32(0xFF000000)
)
pub struct map {
// Byte size of value
value_bytes int
mut:
// Index of the highest index in the hashtable
range_cap u32
// Number of cached hashbits left for rehasing
window byte
// Used for right-shifting out used hashbits
shift byte
// Pointer to Key-value memory
key_values &KeyValue
// Pointer to probe_hash memory. Each Key-value has a
// corresponding probe_hash-DWORD. Upper-bits are the
// probe-count and lower-bits are bits from the hash.
probe_hash &u32
// Measure that decides when to increase the capacity
load_factor f32
pub mut:
// Number of key-values currently in the hashmap
size int
}
struct KeyValue {
key string
mut:
value voidptr
}
// Dynamic array with very low growth factor
struct DenseArray {
mut:
data &KeyValue
cap u32
size u32
}
fn new_map(n, value_bytes int) map {
probe_hash_bytes := sizeof(u32) * init_capicity
key_value_bytes := sizeof(KeyValue) * init_capicity
memory := vcalloc(key_value_bytes + probe_hash_bytes)
return map{
value_bytes: value_bytes
range_cap: init_range_cap
shift: init_log_capicity
window: cached_hashbits
key_values: &KeyValue(memory)
probe_hash: &u32(memory + key_value_bytes)
load_factor: init_load_factor
size: 0
}
}
fn new_map_init(n, value_bytes int, keys &string, values voidptr) map {
mut out := new_map(n, value_bytes)
for i in 0 .. n {
out.set(keys[i], values + i * value_bytes)
}
return out
}
fn (m mut map) set(key string, value voidptr) {
// load_factor can be adjusted.
if (f32(m.size) / f32(m.range_cap)) > m.load_factor {
m.expand()
}
hash := wyhash.wyhash_c(key.str, u64(key.len), 0)
mut probe_hash := u32(((hash>>m.shift) & hash_mask) | probe_inc)
mut index := hash & m.range_cap
// While probe count is less
for probe_hash < m.probe_hash[index] {
index = (index + 1) & m.range_cap
probe_hash += probe_inc
}
// While we might have a match
for probe_hash == m.probe_hash[index] {
if key == m.key_values[index].key {
C.memcpy(m.key_values[index].value, value, m.value_bytes)
return
}
index = (index + 1) & m.range_cap
probe_hash += probe_inc
}
// Match is not possible anymore.
// Probe until an empty index is found.
// Swap when probe count is higher/richer (Robin Hood).
mut current_kv := KeyValue{
key:key
value:malloc(m.value_bytes)
}
C.memcpy(current_kv.value, value, m.value_bytes)
for m.probe_hash[index] != 0 {
if probe_hash > m.probe_hash[index] {
// Swap probe_hash
tmp_probe_hash := m.probe_hash[index]
m.probe_hash[index] = probe_hash
probe_hash = tmp_probe_hash
// Swap KeyValue
tmp_kv := m.key_values[index]
m.key_values[index] = current_kv
current_kv = tmp_kv
}
index = (index + 1) & m.range_cap
probe_hash += probe_inc
}
// Should almost never happen
if (probe_hash & max_probe) == max_probe {
m.expand()
m.set(current_kv.key, current_kv.value)
return
}
m.probe_hash[index] = probe_hash
m.key_values[index] = current_kv
m.size++
}
fn (m mut map) expand() {
old_range_cap := m.range_cap
// double the size of the hashmap
m.range_cap = ((m.range_cap + 1)<<1) - 1
// check if no hashbits are left
if m.window == 0 {
m.shift += cached_hashbits
m.rehash(old_range_cap)
m.window = cached_hashbits
}
else {
m.cached_rehash(old_range_cap)
}
m.window--
}
fn (m mut map) rehash(old_range_cap u32) {
probe_hash_bytes := sizeof(u32) * (m.range_cap + 1)
key_value_bytes := sizeof(KeyValue) * (m.range_cap + 1)
memory := vcalloc(probe_hash_bytes + key_value_bytes)
mut new_key_values := &KeyValue(memory)
mut new_probe_hash := &u32(memory + key_value_bytes)
for i := u32(0); i < old_range_cap + 1; i++ {
if m.probe_hash[i] != 0 {
mut kv := m.key_values[i]
hash := wyhash.wyhash_c(kv.key.str, u64(kv.key.len), 0)
mut probe_hash := u32(((hash>>m.shift) & hash_mask) | probe_inc)
mut index := hash & m.range_cap
// While probe count is less
for probe_hash < new_probe_hash[index] {
index = (index + 1) & m.range_cap
probe_hash += probe_inc
}
// Probe until an empty index is found.
// Swap when probe count is higher/richer (Robin Hood).
for new_probe_hash[index] != 0 {
if probe_hash > new_probe_hash[index] {
// Swap probe_hash
tmp_probe_hash := new_probe_hash[index]
new_probe_hash[index] = probe_hash
probe_hash = tmp_probe_hash
// Swap KeyValue
tmp_kv := new_key_values[index]
new_key_values[index] = kv
kv = tmp_kv
}
index = (index + 1) & m.range_cap
probe_hash += probe_inc
}
// Should almost never happen
if (probe_hash & max_probe) == max_probe {
m.expand()
m.set(kv.key, kv.value)
return
}
new_probe_hash[index] = probe_hash
new_key_values[index] = kv
}
}
unsafe{
free(m.key_values)
}
m.key_values = new_key_values
m.probe_hash = new_probe_hash
}
fn (m mut map) cached_rehash(old_range_cap u32) {
probe_hash_bytes := sizeof(u32) * (m.range_cap + 1)
key_value_bytes := sizeof(KeyValue) * (m.range_cap + 1)
memory := vcalloc(probe_hash_bytes + key_value_bytes)
mut new_probe_hash := &u32(memory + key_value_bytes)
mut new_key_values := &KeyValue(memory)
for i := u32(0); i < old_range_cap + 1; i++ {
if m.probe_hash[i] != 0 {
mut kv := m.key_values[i]
mut probe_hash := m.probe_hash[i]
original := u64(i - ((probe_hash>>hashbits) - 1)) & (m.range_cap>>1)
hash := original | (probe_hash<<m.shift)
probe_hash = (probe_hash & hash_mask) | probe_inc
mut index := hash & m.range_cap
// While probe count is less
for probe_hash < new_probe_hash[index] {
index = (index + 1) & m.range_cap
probe_hash += probe_inc
}
// Probe until an empty index is found.
// Swap when probe count is higher/richer (Robin Hood).
for new_probe_hash[index] != 0 {
if probe_hash > new_probe_hash[index] {
// Swap probe_hash
tmp_probe_hash := new_probe_hash[index]
new_probe_hash[index] = probe_hash
probe_hash = tmp_probe_hash
// Swap KeyValue
tmp_kv := new_key_values[index]
new_key_values[index] = kv
kv = tmp_kv
}
index = (index + 1) & m.range_cap
probe_hash += probe_inc
}
// Should almost never happen
if (probe_hash & max_probe) == max_probe {
m.expand()
m.set(kv.key, kv.value)
return
}
new_probe_hash[index] = probe_hash
new_key_values[index] = kv
}
}
unsafe{
free(m.key_values)
}
m.key_values = new_key_values
m.probe_hash = new_probe_hash
}
pub fn (m mut map) delete(key string) {
hash := wyhash.wyhash_c(key.str, u64(key.len), 0)
mut index := hash & m.range_cap
mut probe_hash := u32(((hash>>m.shift) & hash_mask) | probe_inc)
for probe_hash < m.probe_hash[index] {
index = (index + 1) & m.range_cap
probe_hash += probe_inc
}
// Perform backwards shifting
for probe_hash == m.probe_hash[index] {
if key == m.key_values[index].key {
mut old_index := index
index = (index + 1) & m.range_cap
mut current_probe_hash := m.probe_hash[index]
for (current_probe_hash>>hashbits) > 1 {
m.probe_hash[old_index] = current_probe_hash - probe_inc
m.key_values[old_index] = m.key_values[index]
old_index = index
index = (index + 1) & m.range_cap
current_probe_hash = m.probe_hash[index]
}
m.probe_hash[old_index] = 0
m.size--
return
}
index = (index + 1) & m.range_cap
probe_hash += probe_inc
}
}
fn (m map) get(key string, out voidptr) bool {
hash := wyhash.wyhash_c(key.str, u64(key.len), 0)
mut index := hash & m.range_cap
mut probe_hash := u32(((hash>>m.shift) & hash_mask) | probe_inc)
for probe_hash < m.probe_hash[index] {
index = (index + 1) & m.range_cap
probe_hash += probe_inc
}
for probe_hash == m.probe_hash[index] {
if key == m.key_values[index].key {
C.memcpy(out, m.key_values[index].value, m.value_bytes)
return true
}
index = (index + 1) & m.range_cap
probe_hash += probe_inc
}
return false
}
// TODO
/*
fn (m &map) get2(key string, out voidptr) voidptr {
}
*/
fn (m map) exists(key string) bool {
if m.value_bytes == 0 {
return false
}
hash := wyhash.wyhash_c(key.str, u64(key.len), 0)
mut index := hash & m.range_cap
mut probe_hash := u32(((hash>>m.shift) & hash_mask) | probe_inc)
for probe_hash < m.probe_hash[index] {
index = (index + 1) & m.range_cap
probe_hash += probe_inc
}
for probe_hash == m.probe_hash[index] {
if key == m.key_values[index].key {
return true
}
index = (index + 1) & m.range_cap
probe_hash += probe_inc
}
return false
}
pub fn (m &map) keys() []string {
mut keys := [''].repeat(m.size)
//mut keys := []string{len: m.size}
if m.value_bytes == 0 {
return keys
}
mut j := 0
for i := u32(0); i < m.range_cap + 1; i++ {
if m.probe_hash[i] != 0 {
keys[j] = m.key_values[i].key
j++
}
}
return keys
}
pub fn (m mut map) set_load_factor(new_load_factor f32) {
if new_load_factor > 1.0 {
m.load_factor = 1.0
}
else if new_load_factor < 0.1 {
m.load_factor = 0.1
}
else {
m.load_factor = new_load_factor
}
}
pub fn (m mut map) free() {
unsafe{
free(m.key_values)
}
}
pub fn (m map) print() {
println('TODO')
}
pub fn (m map_string) str() string {
if m.size == 0 {
return '{}'
}
mut sb := strings.new_builder(50)
sb.writeln('{')
for key, val in m {
sb.writeln(' "$key" => "$val"')
}
sb.writeln('}')
return sb.str()
}