478 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			478 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			V
		
	
	
| // Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
 | |
| // Use of this source code is governed by an MIT license
 | |
| // that can be found in the LICENSE file.
 | |
| module bits
 | |
| 
 | |
| const (
 | |
| 	// See http://supertech.csail.mit.edu/papers/debruijn.pdf
 | |
| 	de_bruijn32    = u32(0x077CB531)
 | |
| 	de_bruijn32tab = [byte(0), 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 31, 27, 13,
 | |
| 		23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9]
 | |
| 	de_bruijn64    = u64(0x03f79d71b4ca8b09)
 | |
| 	de_bruijn64tab = [byte(0), 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4, 62, 47,
 | |
| 		59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5, 63, 55, 48, 27, 60, 41, 37, 16,
 | |
| 		46, 35, 44, 21, 52, 32, 23, 11, 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7,
 | |
| 		6]
 | |
| )
 | |
| 
 | |
| const (
 | |
| 	m0 = u64(0x5555555555555555) // 01010101 ...
 | |
| 	m1 = u64(0x3333333333333333) // 00110011 ...
 | |
| 	m2 = u64(0x0f0f0f0f0f0f0f0f) // 00001111 ...
 | |
| 	m3 = u64(0x00ff00ff00ff00ff) // etc.
 | |
| 	m4 = u64(0x0000ffff0000ffff)
 | |
| )
 | |
| 
 | |
| const (
 | |
| 	// save importing math mod just for these
 | |
| 	max_u32 = u32(4294967295)
 | |
| 	max_u64 = u64(18446744073709551615)
 | |
| )
 | |
| 
 | |
| // --- LeadingZeros ---
 | |
| // leading_zeros_8 returns the number of leading zero bits in x; the result is 8 for x == 0.
 | |
| pub fn leading_zeros_8(x byte) int {
 | |
| 	return 8 - len_8(x)
 | |
| }
 | |
| 
 | |
| // leading_zeros_16 returns the number of leading zero bits in x; the result is 16 for x == 0.
 | |
| pub fn leading_zeros_16(x u16) int {
 | |
| 	return 16 - len_16(x)
 | |
| }
 | |
| 
 | |
| // leading_zeros_32 returns the number of leading zero bits in x; the result is 32 for x == 0.
 | |
| pub fn leading_zeros_32(x u32) int {
 | |
| 	return 32 - len_32(x)
 | |
| }
 | |
| 
 | |
| // leading_zeros_64 returns the number of leading zero bits in x; the result is 64 for x == 0.
 | |
| pub fn leading_zeros_64(x u64) int {
 | |
| 	return 64 - len_64(x)
 | |
| }
 | |
| 
 | |
| // --- TrailingZeros ---
 | |
| // trailing_zeros_8 returns the number of trailing zero bits in x; the result is 8 for x == 0.
 | |
| pub fn trailing_zeros_8(x byte) int {
 | |
| 	return int(ntz_8_tab[x])
 | |
| }
 | |
| 
 | |
| // trailing_zeros_16 returns the number of trailing zero bits in x; the result is 16 for x == 0.
 | |
| pub fn trailing_zeros_16(x u16) int {
 | |
| 	if x == 0 {
 | |
| 		return 16
 | |
| 	}
 | |
| 	// see comment in trailing_zeros_64
 | |
| 	return int(bits.de_bruijn32tab[u32(x & -x) * bits.de_bruijn32 >> (32 - 5)])
 | |
| }
 | |
| 
 | |
| // trailing_zeros_32 returns the number of trailing zero bits in x; the result is 32 for x == 0.
 | |
| pub fn trailing_zeros_32(x u32) int {
 | |
| 	if x == 0 {
 | |
| 		return 32
 | |
| 	}
 | |
| 	// see comment in trailing_zeros_64
 | |
| 	return int(bits.de_bruijn32tab[(x & -x) * bits.de_bruijn32 >> (32 - 5)])
 | |
| }
 | |
| 
 | |
| // trailing_zeros_64 returns the number of trailing zero bits in x; the result is 64 for x == 0.
 | |
| pub fn trailing_zeros_64(x u64) int {
 | |
| 	if x == 0 {
 | |
| 		return 64
 | |
| 	}
 | |
| 	// If popcount is fast, replace code below with return popcount(^x & (x - 1)).
 | |
| 	//
 | |
| 	// x & -x leaves only the right-most bit set in the word. Let k be the
 | |
| 	// index of that bit. Since only a single bit is set, the value is two
 | |
| 	// to the power of k. Multiplying by a power of two is equivalent to
 | |
| 	// left shifting, in this case by k bits. The de Bruijn (64 bit) constant
 | |
| 	// is such that all six bit, consecutive substrings are distinct.
 | |
| 	// Therefore, if we have a left shifted version of this constant we can
 | |
| 	// find by how many bits it was shifted by looking at which six bit
 | |
| 	// substring ended up at the top of the word.
 | |
| 	// (Knuth, volume 4, section 7.3.1)
 | |
| 	return int(bits.de_bruijn64tab[(x & -x) * bits.de_bruijn64 >> (64 - 6)])
 | |
| }
 | |
| 
 | |
| // --- OnesCount ---
 | |
| // ones_count_8 returns the number of one bits ("population count") in x.
 | |
| pub fn ones_count_8(x byte) int {
 | |
| 	return int(pop_8_tab[x])
 | |
| }
 | |
| 
 | |
| // ones_count_16 returns the number of one bits ("population count") in x.
 | |
| pub fn ones_count_16(x u16) int {
 | |
| 	return int(pop_8_tab[x >> 8] + pop_8_tab[x & u16(0xff)])
 | |
| }
 | |
| 
 | |
| // ones_count_32 returns the number of one bits ("population count") in x.
 | |
| pub fn ones_count_32(x u32) int {
 | |
| 	return int(pop_8_tab[x >> 24] + pop_8_tab[x >> 16 & 0xff] + pop_8_tab[x >> 8 & 0xff] +
 | |
| 		pop_8_tab[x & u32(0xff)])
 | |
| }
 | |
| 
 | |
| // ones_count_64 returns the number of one bits ("population count") in x.
 | |
| pub fn ones_count_64(x u64) int {
 | |
| 	// Implementation: Parallel summing of adjacent bits.
 | |
| 	// See "Hacker's Delight", Chap. 5: Counting Bits.
 | |
| 	// The following pattern shows the general approach:
 | |
| 	//
 | |
| 	// x = x>>1&(m0&m) + x&(m0&m)
 | |
| 	// x = x>>2&(m1&m) + x&(m1&m)
 | |
| 	// x = x>>4&(m2&m) + x&(m2&m)
 | |
| 	// x = x>>8&(m3&m) + x&(m3&m)
 | |
| 	// x = x>>16&(m4&m) + x&(m4&m)
 | |
| 	// x = x>>32&(m5&m) + x&(m5&m)
 | |
| 	// return int(x)
 | |
| 	//
 | |
| 	// Masking (& operations) can be left away when there's no
 | |
| 	// danger that a field's sum will carry over into the next
 | |
| 	// field: Since the result cannot be > 64, 8 bits is enough
 | |
| 	// and we can ignore the masks for the shifts by 8 and up.
 | |
| 	// Per "Hacker's Delight", the first line can be simplified
 | |
| 	// more, but it saves at best one instruction, so we leave
 | |
| 	// it alone for clarity.
 | |
| 	mut y := (x >> u64(1) & (bits.m0 & bits.max_u64)) + (x & (bits.m0 & bits.max_u64))
 | |
| 	y = (y >> u64(2) & (bits.m1 & bits.max_u64)) + (y & (bits.m1 & bits.max_u64))
 | |
| 	y = ((y >> 4) + y) & (bits.m2 & bits.max_u64)
 | |
| 	y += y >> 8
 | |
| 	y += y >> 16
 | |
| 	y += y >> 32
 | |
| 	return int(y) & ((1 << 7) - 1)
 | |
| }
 | |
| 
 | |
| // --- RotateLeft ---
 | |
| // rotate_left_8 returns the value of x rotated left by (k mod 8) bits.
 | |
| // To rotate x right by k bits, call rotate_left_8(x, -k).
 | |
| //
 | |
| // This function's execution time does not depend on the inputs.
 | |
| [inline]
 | |
| pub fn rotate_left_8(x byte, k int) byte {
 | |
| 	n := byte(8)
 | |
| 	s := byte(k) & (n - byte(1))
 | |
| 	return (x << s) | (x >> (n - s))
 | |
| }
 | |
| 
 | |
| // rotate_left_16 returns the value of x rotated left by (k mod 16) bits.
 | |
| // To rotate x right by k bits, call rotate_left_16(x, -k).
 | |
| //
 | |
| // This function's execution time does not depend on the inputs.
 | |
| [inline]
 | |
| pub fn rotate_left_16(x u16, k int) u16 {
 | |
| 	n := u16(16)
 | |
| 	s := u16(k) & (n - u16(1))
 | |
| 	return (x << s) | (x >> (n - s))
 | |
| }
 | |
| 
 | |
| // rotate_left_32 returns the value of x rotated left by (k mod 32) bits.
 | |
| // To rotate x right by k bits, call rotate_left_32(x, -k).
 | |
| //
 | |
| // This function's execution time does not depend on the inputs.
 | |
| [inline]
 | |
| pub fn rotate_left_32(x u32, k int) u32 {
 | |
| 	n := u32(32)
 | |
| 	s := u32(k) & (n - u32(1))
 | |
| 	return (x << s) | (x >> (n - s))
 | |
| }
 | |
| 
 | |
| // rotate_left_64 returns the value of x rotated left by (k mod 64) bits.
 | |
| // To rotate x right by k bits, call rotate_left_64(x, -k).
 | |
| //
 | |
| // This function's execution time does not depend on the inputs.
 | |
| [inline]
 | |
| pub fn rotate_left_64(x u64, k int) u64 {
 | |
| 	n := u64(64)
 | |
| 	s := u64(k) & (n - u64(1))
 | |
| 	return (x << s) | (x >> (n - s))
 | |
| }
 | |
| 
 | |
| // --- Reverse ---
 | |
| // reverse_8 returns the value of x with its bits in reversed order.
 | |
| [inline]
 | |
| pub fn reverse_8(x byte) byte {
 | |
| 	return rev_8_tab[x]
 | |
| }
 | |
| 
 | |
| // reverse_16 returns the value of x with its bits in reversed order.
 | |
| [inline]
 | |
| pub fn reverse_16(x u16) u16 {
 | |
| 	return u16(rev_8_tab[x >> 8]) | (u16(rev_8_tab[x & u16(0xff)]) << 8)
 | |
| }
 | |
| 
 | |
| // reverse_32 returns the value of x with its bits in reversed order.
 | |
| [inline]
 | |
| pub fn reverse_32(x u32) u32 {
 | |
| 	mut y := ((x >> u32(1) & (bits.m0 & bits.max_u32)) | ((x & (bits.m0 & bits.max_u32)) << 1))
 | |
| 	y = ((y >> u32(2) & (bits.m1 & bits.max_u32)) | ((y & (bits.m1 & bits.max_u32)) << u32(2)))
 | |
| 	y = ((y >> u32(4) & (bits.m2 & bits.max_u32)) | ((y & (bits.m2 & bits.max_u32)) << u32(4)))
 | |
| 	return reverse_bytes_32(u32(y))
 | |
| }
 | |
| 
 | |
| // reverse_64 returns the value of x with its bits in reversed order.
 | |
| [inline]
 | |
| pub fn reverse_64(x u64) u64 {
 | |
| 	mut y := ((x >> u64(1) & (bits.m0 & bits.max_u64)) | ((x & (bits.m0 & bits.max_u64)) << 1))
 | |
| 	y = ((y >> u64(2) & (bits.m1 & bits.max_u64)) | ((y & (bits.m1 & bits.max_u64)) << 2))
 | |
| 	y = ((y >> u64(4) & (bits.m2 & bits.max_u64)) | ((y & (bits.m2 & bits.max_u64)) << 4))
 | |
| 	return reverse_bytes_64(y)
 | |
| }
 | |
| 
 | |
| // --- ReverseBytes ---
 | |
| // reverse_bytes_16 returns the value of x with its bytes in reversed order.
 | |
| //
 | |
| // This function's execution time does not depend on the inputs.
 | |
| [inline]
 | |
| pub fn reverse_bytes_16(x u16) u16 {
 | |
| 	return (x >> 8) | (x << 8)
 | |
| }
 | |
| 
 | |
| // reverse_bytes_32 returns the value of x with its bytes in reversed order.
 | |
| //
 | |
| // This function's execution time does not depend on the inputs.
 | |
| [inline]
 | |
| pub fn reverse_bytes_32(x u32) u32 {
 | |
| 	y := ((x >> u32(8) & (bits.m3 & bits.max_u32)) | ((x & (bits.m3 & bits.max_u32)) << u32(8)))
 | |
| 	return u32((y >> 16) | (y << 16))
 | |
| }
 | |
| 
 | |
| // reverse_bytes_64 returns the value of x with its bytes in reversed order.
 | |
| //
 | |
| // This function's execution time does not depend on the inputs.
 | |
| [inline]
 | |
| pub fn reverse_bytes_64(x u64) u64 {
 | |
| 	mut y := ((x >> u64(8) & (bits.m3 & bits.max_u64)) | ((x & (bits.m3 & bits.max_u64)) << u64(8)))
 | |
| 	y = ((y >> u64(16) & (bits.m4 & bits.max_u64)) | ((y & (bits.m4 & bits.max_u64)) << u64(16)))
 | |
| 	return (y >> 32) | (y << 32)
 | |
| }
 | |
| 
 | |
| // --- Len ---
 | |
| // len_8 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
 | |
| pub fn len_8(x byte) int {
 | |
| 	return int(len_8_tab[x])
 | |
| }
 | |
| 
 | |
| // len_16 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
 | |
| pub fn len_16(x u16) int {
 | |
| 	mut y := x
 | |
| 	mut n := 0
 | |
| 	if y >= 1 << 8 {
 | |
| 		y >>= 8
 | |
| 		n = 8
 | |
| 	}
 | |
| 	return n + int(len_8_tab[y])
 | |
| }
 | |
| 
 | |
| // len_32 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
 | |
| pub fn len_32(x u32) int {
 | |
| 	mut y := x
 | |
| 	mut n := 0
 | |
| 	if y >= (1 << 16) {
 | |
| 		y >>= 16
 | |
| 		n = 16
 | |
| 	}
 | |
| 	if y >= (1 << 8) {
 | |
| 		y >>= 8
 | |
| 		n += 8
 | |
| 	}
 | |
| 	return n + int(len_8_tab[y])
 | |
| }
 | |
| 
 | |
| // len_64 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
 | |
| pub fn len_64(x u64) int {
 | |
| 	mut y := x
 | |
| 	mut n := 0
 | |
| 	if y >= u64(1) << u64(32) {
 | |
| 		y >>= 32
 | |
| 		n = 32
 | |
| 	}
 | |
| 	if y >= u64(1) << u64(16) {
 | |
| 		y >>= 16
 | |
| 		n += 16
 | |
| 	}
 | |
| 	if y >= u64(1) << u64(8) {
 | |
| 		y >>= 8
 | |
| 		n += 8
 | |
| 	}
 | |
| 	return n + int(len_8_tab[y])
 | |
| }
 | |
| 
 | |
| // --- Add with carry ---
 | |
| // Add returns the sum with carry of x, y and carry: sum = x + y + carry.
 | |
| // The carry input must be 0 or 1; otherwise the behavior is undefined.
 | |
| // The carryOut output is guaranteed to be 0 or 1.
 | |
| //
 | |
| // add_32 returns the sum with carry of x, y and carry: sum = x + y + carry.
 | |
| // The carry input must be 0 or 1; otherwise the behavior is undefined.
 | |
| // The carryOut output is guaranteed to be 0 or 1.
 | |
| //
 | |
| // This function's execution time does not depend on the inputs.
 | |
| pub fn add_32(x u32, y u32, carry u32) (u32, u32) {
 | |
| 	sum64 := u64(x) + u64(y) + u64(carry)
 | |
| 	sum := u32(sum64)
 | |
| 	carry_out := u32(sum64 >> 32)
 | |
| 	return sum, carry_out
 | |
| }
 | |
| 
 | |
| // add_64 returns the sum with carry of x, y and carry: sum = x + y + carry.
 | |
| // The carry input must be 0 or 1; otherwise the behavior is undefined.
 | |
| // The carryOut output is guaranteed to be 0 or 1.
 | |
| //
 | |
| // This function's execution time does not depend on the inputs.
 | |
| pub fn add_64(x u64, y u64, carry u64) (u64, u64) {
 | |
| 	sum := x + y + carry
 | |
| 	// The sum will overflow if both top bits are set (x & y) or if one of them
 | |
| 	// is (x | y), and a carry from the lower place happened. If such a carry
 | |
| 	// happens, the top bit will be 1 + 0 + 1 = 0 (&^ sum).
 | |
| 	carry_out := ((x & y) | ((x | y) & ~sum)) >> 63
 | |
| 	return sum, carry_out
 | |
| }
 | |
| 
 | |
| // --- Subtract with borrow ---
 | |
| // Sub returns the difference of x, y and borrow: diff = x - y - borrow.
 | |
| // The borrow input must be 0 or 1; otherwise the behavior is undefined.
 | |
| // The borrowOut output is guaranteed to be 0 or 1.
 | |
| //
 | |
| // sub_32 returns the difference of x, y and borrow, diff = x - y - borrow.
 | |
| // The borrow input must be 0 or 1; otherwise the behavior is undefined.
 | |
| // The borrowOut output is guaranteed to be 0 or 1.
 | |
| //
 | |
| // This function's execution time does not depend on the inputs.
 | |
| pub fn sub_32(x u32, y u32, borrow u32) (u32, u32) {
 | |
| 	diff := x - y - borrow
 | |
| 	// The difference will underflow if the top bit of x is not set and the top
 | |
| 	// bit of y is set (^x & y) or if they are the same (^(x ^ y)) and a borrow
 | |
| 	// from the lower place happens. If that borrow happens, the result will be
 | |
| 	// 1 - 1 - 1 = 0 - 0 - 1 = 1 (& diff).
 | |
| 	borrow_out := ((~x & y) | (~(x ^ y) & diff)) >> 31
 | |
| 	return diff, borrow_out
 | |
| }
 | |
| 
 | |
| // sub_64 returns the difference of x, y and borrow: diff = x - y - borrow.
 | |
| // The borrow input must be 0 or 1; otherwise the behavior is undefined.
 | |
| // The borrowOut output is guaranteed to be 0 or 1.
 | |
| //
 | |
| // This function's execution time does not depend on the inputs.
 | |
| pub fn sub_64(x u64, y u64, borrow u64) (u64, u64) {
 | |
| 	diff := x - y - borrow
 | |
| 	// See Sub32 for the bit logic.
 | |
| 	borrow_out := ((~x & y) | (~(x ^ y) & diff)) >> 63
 | |
| 	return diff, borrow_out
 | |
| }
 | |
| 
 | |
| // --- Full-width multiply ---
 | |
| const (
 | |
| 	two32          = u64(0x100000000)
 | |
| 	mask32         = two32 - 1
 | |
| 	overflow_error = 'Overflow Error'
 | |
| 	divide_error   = 'Divide Error'
 | |
| )
 | |
| 
 | |
| // mul_32 returns the 64-bit product of x and y: (hi, lo) = x * y
 | |
| // with the product bits' upper half returned in hi and the lower
 | |
| // half returned in lo.
 | |
| //
 | |
| // This function's execution time does not depend on the inputs.
 | |
| pub fn mul_32(x u32, y u32) (u32, u32) {
 | |
| 	tmp := u64(x) * u64(y)
 | |
| 	hi := u32(tmp >> 32)
 | |
| 	lo := u32(tmp)
 | |
| 	return hi, lo
 | |
| }
 | |
| 
 | |
| // mul_64 returns the 128-bit product of x and y: (hi, lo) = x * y
 | |
| // with the product bits' upper half returned in hi and the lower
 | |
| // half returned in lo.
 | |
| //
 | |
| // This function's execution time does not depend on the inputs.
 | |
| pub fn mul_64(x u64, y u64) (u64, u64) {
 | |
| 	x0 := x & bits.mask32
 | |
| 	x1 := x >> 32
 | |
| 	y0 := y & bits.mask32
 | |
| 	y1 := y >> 32
 | |
| 	w0 := x0 * y0
 | |
| 	t := x1 * y0 + (w0 >> 32)
 | |
| 	mut w1 := t & bits.mask32
 | |
| 	w2 := t >> 32
 | |
| 	w1 += x0 * y1
 | |
| 	hi := x1 * y1 + w2 + (w1 >> 32)
 | |
| 	lo := x * y
 | |
| 	return hi, lo
 | |
| }
 | |
| 
 | |
| // --- Full-width divide ---
 | |
| // div_32 returns the quotient and remainder of (hi, lo) divided by y:
 | |
| // quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
 | |
| // half in parameter hi and the lower half in parameter lo.
 | |
| // div_32 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
 | |
| pub fn div_32(hi u32, lo u32, y u32) (u32, u32) {
 | |
| 	if y != 0 && y <= hi {
 | |
| 		panic(bits.overflow_error)
 | |
| 	}
 | |
| 	z := (u64(hi) << 32) | u64(lo)
 | |
| 	quo := u32(z / u64(y))
 | |
| 	rem := u32(z % u64(y))
 | |
| 	return quo, rem
 | |
| }
 | |
| 
 | |
| // div_64 returns the quotient and remainder of (hi, lo) divided by y:
 | |
| // quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
 | |
| // half in parameter hi and the lower half in parameter lo.
 | |
| // div_64 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
 | |
| pub fn div_64(hi u64, lo u64, y1 u64) (u64, u64) {
 | |
| 	mut y := y1
 | |
| 	if y == 0 {
 | |
| 		panic(bits.overflow_error)
 | |
| 	}
 | |
| 	if y <= hi {
 | |
| 		panic(bits.overflow_error)
 | |
| 	}
 | |
| 	s := u32(leading_zeros_64(y))
 | |
| 	y <<= s
 | |
| 	yn1 := y >> 32
 | |
| 	yn0 := y & bits.mask32
 | |
| 	un32 := (hi << s) | (lo >> (64 - s))
 | |
| 	un10 := lo << s
 | |
| 	un1 := un10 >> 32
 | |
| 	un0 := un10 & bits.mask32
 | |
| 	mut q1 := un32 / yn1
 | |
| 	mut rhat := un32 - q1 * yn1
 | |
| 	for q1 >= bits.two32 || q1 * yn0 > bits.two32 * rhat + un1 {
 | |
| 		q1--
 | |
| 		rhat += yn1
 | |
| 		if rhat >= bits.two32 {
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| 	un21 := un32 * bits.two32 + un1 - q1 * y
 | |
| 	mut q0 := un21 / yn1
 | |
| 	rhat = un21 - q0 * yn1
 | |
| 	for q0 >= bits.two32 || q0 * yn0 > bits.two32 * rhat + un0 {
 | |
| 		q0--
 | |
| 		rhat += yn1
 | |
| 		if rhat >= bits.two32 {
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| 	return q1 * bits.two32 + q0, (un21 * bits.two32 + un0 - q0 * y) >> s
 | |
| }
 | |
| 
 | |
| // rem_32 returns the remainder of (hi, lo) divided by y. Rem32 panics
 | |
| // for y == 0 (division by zero) but, unlike Div32, it doesn't panic
 | |
| // on a quotient overflow.
 | |
| pub fn rem_32(hi u32, lo u32, y u32) u32 {
 | |
| 	return u32(((u64(hi) << 32) | u64(lo)) % u64(y))
 | |
| }
 | |
| 
 | |
| // rem_64 returns the remainder of (hi, lo) divided by y. Rem64 panics
 | |
| // for y == 0 (division by zero) but, unlike div_64, it doesn't panic
 | |
| // on a quotient overflow.
 | |
| pub fn rem_64(hi u64, lo u64, y u64) u64 {
 | |
| 	// We scale down hi so that hi < y, then use div_64 to compute the
 | |
| 	// rem with the guarantee that it won't panic on quotient overflow.
 | |
| 	// Given that
 | |
| 	// hi ≡ hi%y    (mod y)
 | |
| 	// we have
 | |
| 	// hi<<64 + lo ≡ (hi%y)<<64 + lo    (mod y)
 | |
| 	_, rem := div_64(hi % y, lo, y)
 | |
| 	return rem
 | |
| }
 |