245 lines
7.3 KiB
Go
245 lines
7.3 KiB
Go
import math
|
|
|
|
// Tests are based on and verified from practice examples of Khan Academy
|
|
// https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers
|
|
|
|
fn test_complex_addition() {
|
|
mut c1 := math.complex(0,-10)
|
|
mut c2 := math.complex(-40,8)
|
|
mut result := c1 + c2
|
|
assert result.equals(math.complex(-40,-2))
|
|
c1 = math.complex(-71,2)
|
|
c2 = math.complex(88,-12)
|
|
result = c1 + c2
|
|
assert result.equals(math.complex(17,-10))
|
|
c1 = math.complex(0,-30)
|
|
c2 = math.complex(52,-30)
|
|
result = c1 + c2
|
|
assert result.equals(math.complex(52,-60))
|
|
c1 = math.complex(12,-9)
|
|
c2 = math.complex(32,-6)
|
|
result = c1 + c2
|
|
assert result.equals(math.complex(44,-15))
|
|
}
|
|
|
|
fn test_complex_subtraction() {
|
|
mut c1 := math.complex(-8,0)
|
|
mut c2 := math.complex(6,30)
|
|
mut result := c1 - c2
|
|
assert result.equals(math.complex(-14,-30))
|
|
c1 = math.complex(-19,7)
|
|
c2 = math.complex(29,32)
|
|
result = c1 - c2
|
|
assert result.equals(math.complex(-48,-25))
|
|
c1 = math.complex(12,0)
|
|
c2 = math.complex(23,13)
|
|
result = c1 - c2
|
|
assert result.equals(math.complex(-11,-13))
|
|
c1 = math.complex(-14,3)
|
|
c2 = math.complex(0,14)
|
|
result = c1 - c2
|
|
assert result.equals(math.complex(-14,-11))
|
|
}
|
|
|
|
fn test_complex_multiplication() {
|
|
mut c1 := math.complex(1,2)
|
|
mut c2 := math.complex(1,-4)
|
|
mut result := c1.multiply(c2)
|
|
assert result.equals(math.complex(9,-2))
|
|
c1 = math.complex(-4,-4)
|
|
c2 = math.complex(-5,-3)
|
|
result = c1.multiply(c2)
|
|
assert result.equals(math.complex(8,32))
|
|
c1 = math.complex(4,4)
|
|
c2 = math.complex(-2,-5)
|
|
result = c1.multiply(c2)
|
|
assert result.equals(math.complex(12,-28))
|
|
c1 = math.complex(2,-2)
|
|
c2 = math.complex(4,-4)
|
|
result = c1.multiply(c2)
|
|
assert result.equals(math.complex(0,-16))
|
|
}
|
|
|
|
fn test_complex_division() {
|
|
mut c1 := math.complex(-9,-6)
|
|
mut c2 := math.complex(-3,-2)
|
|
mut result := c1.divide(c2)
|
|
assert result.equals(math.complex(3,0))
|
|
c1 = math.complex(-23,11)
|
|
c2 = math.complex(5,1)
|
|
result = c1.divide(c2)
|
|
assert result.equals(math.complex(-4,3))
|
|
c1 = math.complex(8,-2)
|
|
c2 = math.complex(-4,1)
|
|
result = c1.divide(c2)
|
|
assert result.equals(math.complex(-2,0))
|
|
c1 = math.complex(11,24)
|
|
c2 = math.complex(-4,-1)
|
|
result = c1.divide(c2)
|
|
assert result.equals(math.complex(-4,-5))
|
|
}
|
|
|
|
fn test_complex_conjugate() {
|
|
mut c1 := math.complex(0,8)
|
|
mut result := c1.conjugate()
|
|
assert result.equals(math.complex(0,-8))
|
|
c1 = math.complex(7,3)
|
|
result = c1.conjugate()
|
|
assert result.equals(math.complex(7,-3))
|
|
c1 = math.complex(2,2)
|
|
result = c1.conjugate()
|
|
assert result.equals(math.complex(2,-2))
|
|
c1 = math.complex(7,0)
|
|
result = c1.conjugate()
|
|
assert result.equals(math.complex(7,0))
|
|
}
|
|
|
|
fn test_complex_equals() {
|
|
mut c1 := math.complex(0,8)
|
|
mut c2 := math.complex(0,8)
|
|
assert c1.equals(c2)
|
|
c1 = math.complex(-3,19)
|
|
c2 = math.complex(-3,19)
|
|
assert c1.equals(c2)
|
|
}
|
|
|
|
fn test_complex_angle(){
|
|
mut c := math.complex(1, 0)
|
|
assert c.angle() * 180 / math.Pi == 0
|
|
c = math.complex(1, 1)
|
|
assert c.angle() * 180 / math.Pi == 45
|
|
c = math.complex(0, 1)
|
|
assert c.angle() * 180 / math.Pi == 90
|
|
c = math.complex(-1, 1)
|
|
assert c.angle() * 180 / math.Pi == 135
|
|
c = math.complex(-1, -1)
|
|
assert c.angle() * 180 / math.Pi == -135
|
|
mut cc := c.conjugate()
|
|
assert cc.angle() + c.angle() == 0
|
|
}
|
|
|
|
|
|
fn test_complex_addinv() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := math.complex(5,7)
|
|
mut c2 := math.complex(-5,-7)
|
|
mut result := c1.addinv()
|
|
assert result.equals(c2)
|
|
c1 = math.complex(-3,4)
|
|
c2 = math.complex(3,-4)
|
|
result = c1.addinv()
|
|
assert result.equals(c2)
|
|
c1 = math.complex(-1,-2)
|
|
c2 = math.complex(1,2)
|
|
result = c1.addinv()
|
|
assert result.equals(c2)
|
|
}
|
|
|
|
fn test_complex_mulinv() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := math.complex(5,7)
|
|
mut c2 := math.complex(0.067568,-0.094595)
|
|
mut result := c1.mulinv()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = math.complex(-3,4)
|
|
c2 = math.complex(-0.12,-0.16)
|
|
result = c1.mulinv()
|
|
assert result.str().eq(c2.str())
|
|
c1 = math.complex(-1,-2)
|
|
c2 = math.complex(-0.2,0.4)
|
|
result = c1.mulinv()
|
|
assert result.equals(c2)
|
|
}
|
|
|
|
fn test_complex_mod() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := math.complex(5,7)
|
|
mut result := c1.mod()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq('8.602325')
|
|
c1 = math.complex(-3,4)
|
|
result = c1.mod()
|
|
assert result == 5
|
|
c1 = math.complex(-1,-2)
|
|
result = c1.mod()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq('2.236068')
|
|
}
|
|
|
|
fn test_complex_pow() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := math.complex(5,7)
|
|
mut c2 := math.complex(-24.0,70.0)
|
|
mut result := c1.pow(2)
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = math.complex(-3,4)
|
|
c2 = math.complex(117,44)
|
|
result = c1.pow(3)
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = math.complex(-1,-2)
|
|
c2 = math.complex(-7,-24)
|
|
result = c1.pow(4)
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_root() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := math.complex(5,7)
|
|
mut c2 := math.complex(2.607904,1.342074)
|
|
mut result := c1.root(2)
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = math.complex(-3,4)
|
|
c2 = math.complex(1.264953,1.150614)
|
|
result = c1.root(3)
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = math.complex(-1,-2)
|
|
c2 = math.complex(1.068059,-0.595482)
|
|
result = c1.root(4)
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_exp() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := math.complex(5,7)
|
|
mut c2 := math.complex(111.889015,97.505457)
|
|
mut result := c1.exp()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = math.complex(-3,4)
|
|
c2 = math.complex(-0.032543,-0.037679)
|
|
result = c1.exp()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = math.complex(-1,-2)
|
|
c2 = math.complex(-0.153092,-0.334512)
|
|
result = c1.exp()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_ln() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := math.complex(5,7)
|
|
mut c2 := math.complex(2.152033,0.950547)
|
|
mut result := c1.ln()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = math.complex(-3,4)
|
|
c2 = math.complex(1.609438,2.214297)
|
|
result = c1.ln()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = math.complex(-1,-2)
|
|
c2 = math.complex(0.804719,-2.034444)
|
|
result = c1.ln()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|