v/vlib/rand
Henrixounez c324169af0
all: remove intermediate handling for both global definition syntaxes (#6546)
2020-10-03 15:41:45 +02:00
..
mt19937 checker: prompt error on implicit int overflow by literal (#6410) 2020-09-20 16:29:01 +02:00
musl checker: prompt error on implicit int overflow by literal (#6410) 2020-09-20 16:29:01 +02:00
pcg32 checker: prompt error on implicit int overflow by literal (#6410) 2020-09-20 16:29:01 +02:00
splitmix64 checker: prompt error on implicit int overflow by literal (#6410) 2020-09-20 16:29:01 +02:00
sys parser: require assign on type alias (#6477) 2020-09-25 12:02:32 +02:00
util rand: use time microseconds too in default rand initialization; generate proper uuid_v4 2020-07-24 14:33:58 +03:00
wyrand checker: prompt error on implicit int overflow by literal (#6410) 2020-09-20 16:29:01 +02:00
README.md rand: reorganize: phase 2 2020-06-09 15:06:07 +02:00
rand.v all: remove intermediate handling for both global definition syntaxes (#6546) 2020-10-03 15:41:45 +02:00
random_identifiers_test.v rand: add rand.ulid_at_millisecond/1, use it in rand.ulid/0 2020-07-26 14:17:29 +03:00
random_numbers_test.v checker: prompt error on implicit int overflow by literal (#6410) 2020-09-20 16:29:01 +02:00

README.md

Quickstart

The V rand module provides two main ways in which users can generate pseudorandom numbers:

  1. Through top-level functions in the rand module.
    • import rand - Import the rand module.
    • rand.seed(seed_data) to seed (optional).
    • Use rand.int(), rand.u32n(max), etc.
  2. Through a generator of choice. The PRNGs are included in their respective submodules.
    • import rand.pcg32 - Import the module of the PRNG required.
    • mut rng := pcg32.PCG32RNG{} - Initialize the struct. Note that the mut is important.
    • rng.seed(seed_data) - optionally seed it with an array of u32 values.
    • Use rng.int(), rng.u32n(max), etc.

General Background

A PRNG is a Pseudo Random Number Generator. Computers cannot generate truly random numbers without an external source of noise or entropy. We can use algorithms to generate sequences of seemingly random numbers, but their outputs will always be deterministic. This is often useful for simulations that need the same starting seed.

If you need truly random numbers that are going to be used for cryptography, use the crypto.rand module.

Guaranteed functions

The following 21 functions are guaranteed to be supported by rand as well as the individual PRNGs.

  • seed(seed_data) where seed_data is an array of u32 values. Different generators require different number of bits as the initial seed. The smallest is 32-bits, required by sys.SysRNG. Most others require 64-bits or 2 u32 values.
  • u32(), u64(), int(), i64(), f32(), f64()
  • u32n(max), u64n(max), intn(max), i64n(max), f32n(max), f64n(max)
  • u32_in_range(min, max), u64_in_range(min, max), int_in_range(min, max), i64_in_range(min, max), f32_in_range(min, max), f64_in_range(min, max)
  • int31(), int63()

Utility Functions

All the generators are time-seeded. The helper functions publicly available in rand.util module are:

  1. time_seed_array() - returns a []u32 that can be directly plugged into the seed() functions.
  2. time_seed_32() and time_seed_64() - 32-bit and 64-bit values respectively that are generated from the current time.

Caveats

Note that the sys.SysRNG struct (in the C backend) uses C.srand() which sets the seed globally. Consequently, all instances of the RNG will be affected. This problem does not arise for the other RNGs. A workaround (if you must use the libc RNG) is to:

  1. Seed the first instance.
  2. Generate all values required.
  3. Seed the second instance.
  4. Generate all values required.
  5. And so on...