266 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			266 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			V
		
	
	
// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
 | 
						|
// Use of this source code is governed by an MIT license
 | 
						|
// that can be found in the LICENSE file.
 | 
						|
module rand
 | 
						|
 | 
						|
import rand.seed
 | 
						|
import rand.wyrand
 | 
						|
import time
 | 
						|
 | 
						|
// PRNGConfigStruct is a configuration struct for creating a new instance of the default RNG.
 | 
						|
pub struct PRNGConfigStruct {
 | 
						|
	seed []u32 = seed.time_seed_array(2)
 | 
						|
}
 | 
						|
 | 
						|
__global ( default_rng &wyrand.WyRandRNG )
 | 
						|
 | 
						|
// init initializes the default RNG.
 | 
						|
fn init() {
 | 
						|
	default_rng = new_default({})
 | 
						|
}
 | 
						|
 | 
						|
// new_default returns a new instance of the default RNG. If the seed is not provided, the current time will be used to seed the instance.
 | 
						|
pub fn new_default(config PRNGConfigStruct) &wyrand.WyRandRNG {
 | 
						|
	mut rng := &wyrand.WyRandRNG{}
 | 
						|
	rng.seed(config.seed)
 | 
						|
	return rng
 | 
						|
}
 | 
						|
 | 
						|
// seed sets the given array of `u32` values as the seed for the `default_rng`.
 | 
						|
pub fn seed(seed []u32) {
 | 
						|
	default_rng.seed(seed)
 | 
						|
}
 | 
						|
 | 
						|
// u32 returns a uniformly distributed `u32` in range `[0, 2³²)`.
 | 
						|
pub fn u32() u32 {
 | 
						|
	return default_rng.u32()
 | 
						|
}
 | 
						|
 | 
						|
// u64 returns a uniformly distributed `u64` in range `[0, 2⁶⁴)`.
 | 
						|
pub fn u64() u64 {
 | 
						|
	return default_rng.u64()
 | 
						|
}
 | 
						|
 | 
						|
// u32n returns a uniformly distributed pseudorandom 32-bit signed positive `u32` in range `[0, max)`.
 | 
						|
pub fn u32n(max u32) u32 {
 | 
						|
	return default_rng.u32n(max)
 | 
						|
}
 | 
						|
 | 
						|
// u64n returns a uniformly distributed pseudorandom 64-bit signed positive `u64` in range `[0, max)`.
 | 
						|
pub fn u64n(max u64) u64 {
 | 
						|
	return default_rng.u64n(max)
 | 
						|
}
 | 
						|
 | 
						|
// u32_in_range returns a uniformly distributed pseudorandom 32-bit unsigned `u32` in range `[min, max)`.
 | 
						|
pub fn u32_in_range(min u32, max u32) u32 {
 | 
						|
	return default_rng.u32_in_range(min, max)
 | 
						|
}
 | 
						|
 | 
						|
// u64_in_range returns a uniformly distributed pseudorandom 64-bit unsigned `u64` in range `[min, max)`.
 | 
						|
pub fn u64_in_range(min u64, max u64) u64 {
 | 
						|
	return default_rng.u64_in_range(min, max)
 | 
						|
}
 | 
						|
 | 
						|
// int returns a uniformly distributed pseudorandom 32-bit signed (possibly negative) `int`.
 | 
						|
pub fn int() int {
 | 
						|
	return default_rng.int()
 | 
						|
}
 | 
						|
 | 
						|
// intn returns a uniformly distributed pseudorandom 32-bit signed positive `int` in range `[0, max)`.
 | 
						|
pub fn intn(max int) int {
 | 
						|
	return default_rng.intn(max)
 | 
						|
}
 | 
						|
 | 
						|
// byte returns a uniformly distributed pseudorandom 8-bit unsigned positive `byte`.
 | 
						|
pub fn byte() byte {
 | 
						|
	return byte(default_rng.u32() & 0xff)
 | 
						|
}
 | 
						|
 | 
						|
// int_in_range returns a uniformly distributed pseudorandom  32-bit signed int in range `[min, max)`.
 | 
						|
// Both `min` and `max` can be negative, but we must have `min < max`.
 | 
						|
pub fn int_in_range(min int, max int) int {
 | 
						|
	return default_rng.int_in_range(min, max)
 | 
						|
}
 | 
						|
 | 
						|
// int31 returns a uniformly distributed pseudorandom 31-bit signed positive `int`.
 | 
						|
pub fn int31() int {
 | 
						|
	return default_rng.int31()
 | 
						|
}
 | 
						|
 | 
						|
// i64 returns a uniformly distributed pseudorandom 64-bit signed (possibly negative) `i64`.
 | 
						|
pub fn i64() i64 {
 | 
						|
	return default_rng.i64()
 | 
						|
}
 | 
						|
 | 
						|
// i64n returns a uniformly distributed pseudorandom 64-bit signed positive `i64` in range `[0, max)`.
 | 
						|
pub fn i64n(max i64) i64 {
 | 
						|
	return default_rng.i64n(max)
 | 
						|
}
 | 
						|
 | 
						|
// i64_in_range returns a uniformly distributed pseudorandom 64-bit signed `i64` in range `[min, max)`.
 | 
						|
pub fn i64_in_range(min i64, max i64) i64 {
 | 
						|
	return default_rng.i64_in_range(min, max)
 | 
						|
}
 | 
						|
 | 
						|
// int63 returns a uniformly distributed pseudorandom 63-bit signed positive `i64`.
 | 
						|
pub fn int63() i64 {
 | 
						|
	return default_rng.int63()
 | 
						|
}
 | 
						|
 | 
						|
// f32 returns a uniformly distributed 32-bit floating point in range `[0, 1)`.
 | 
						|
pub fn f32() f32 {
 | 
						|
	return default_rng.f32()
 | 
						|
}
 | 
						|
 | 
						|
// f64 returns a uniformly distributed 64-bit floating point in range `[0, 1)`.
 | 
						|
pub fn f64() f64 {
 | 
						|
	return default_rng.f64()
 | 
						|
}
 | 
						|
 | 
						|
// f32n returns a uniformly distributed 32-bit floating point in range `[0, max)`.
 | 
						|
pub fn f32n(max f32) f32 {
 | 
						|
	return default_rng.f32n(max)
 | 
						|
}
 | 
						|
 | 
						|
// f64n returns a uniformly distributed 64-bit floating point in range `[0, max)`.
 | 
						|
pub fn f64n(max f64) f64 {
 | 
						|
	return default_rng.f64n(max)
 | 
						|
}
 | 
						|
 | 
						|
// f32_in_range returns a uniformly distributed 32-bit floating point in range `[min, max)`.
 | 
						|
pub fn f32_in_range(min f32, max f32) f32 {
 | 
						|
	return default_rng.f32_in_range(min, max)
 | 
						|
}
 | 
						|
 | 
						|
// f64_in_range returns a uniformly distributed 64-bit floating point in range `[min, max)`.
 | 
						|
pub fn f64_in_range(min f64, max f64) f64 {
 | 
						|
	return default_rng.f64_in_range(min, max)
 | 
						|
}
 | 
						|
 | 
						|
const (
 | 
						|
	english_letters = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
 | 
						|
	hex_chars       = 'abcdef0123456789'
 | 
						|
	ascii_chars     = '!"#$%&\'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ\\^_`abcdefghijklmnopqrstuvwxyz{|}~'
 | 
						|
)
 | 
						|
 | 
						|
// string_from_set returns a string of length `len` containing random characters sampled from the given `charset`
 | 
						|
pub fn string_from_set(charset string, len int) string {
 | 
						|
	if len == 0 {
 | 
						|
		return ''
 | 
						|
	}
 | 
						|
	mut buf := unsafe { malloc(len) }
 | 
						|
	for i in 0 .. len {
 | 
						|
		unsafe {
 | 
						|
			buf[i] = charset[intn(charset.len)]
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return unsafe { buf.vstring_with_len(len) }
 | 
						|
}
 | 
						|
 | 
						|
// string returns a string of length `len` containing random characters in range `[a-zA-Z]`.
 | 
						|
pub fn string(len int) string {
 | 
						|
	return string_from_set(rand.english_letters, len)
 | 
						|
}
 | 
						|
 | 
						|
// hex returns a hexadecimal number of length `len` containing random characters in range `[a-f0-9]`.
 | 
						|
pub fn hex(len int) string {
 | 
						|
	return string_from_set(rand.hex_chars, len)
 | 
						|
}
 | 
						|
 | 
						|
// ascii returns a random string of the printable ASCII characters with length `len`.
 | 
						|
pub fn ascii(len int) string {
 | 
						|
	return string_from_set(rand.ascii_chars, len)
 | 
						|
}
 | 
						|
 | 
						|
// uuid_v4 generates a random (v4) UUID
 | 
						|
// See https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_(random)
 | 
						|
pub fn uuid_v4() string {
 | 
						|
	buflen := 36
 | 
						|
	mut buf := unsafe { malloc(37) }
 | 
						|
	mut i_buf := 0
 | 
						|
	mut x := u64(0)
 | 
						|
	mut d := byte(0)
 | 
						|
	for i_buf < buflen {
 | 
						|
		mut c := 0
 | 
						|
		x = default_rng.u64()
 | 
						|
		// do most of the bit manipulation at once:
 | 
						|
		x &= 0x0F0F0F0F0F0F0F0F
 | 
						|
		x += 0x3030303030303030
 | 
						|
		// write the ASCII codes to the buffer:
 | 
						|
		for c < 8 && i_buf < buflen {
 | 
						|
			d = byte(x)
 | 
						|
			unsafe {
 | 
						|
				buf[i_buf] = if d > 0x39 { d + 0x27 } else { d }
 | 
						|
			}
 | 
						|
			i_buf++
 | 
						|
			c++
 | 
						|
			x = x >> 8
 | 
						|
		}
 | 
						|
	}
 | 
						|
	// there are still some random bits in x:
 | 
						|
	x = x >> 8
 | 
						|
	d = byte(x)
 | 
						|
	unsafe {
 | 
						|
		buf[19] = if d > 0x39 { d + 0x27 } else { d }
 | 
						|
		buf[8] = `-`
 | 
						|
		buf[13] = `-`
 | 
						|
		buf[18] = `-`
 | 
						|
		buf[23] = `-`
 | 
						|
		buf[14] = `4`
 | 
						|
		buf[buflen] = 0
 | 
						|
		return buf.vstring_with_len(buflen)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
const (
 | 
						|
	ulid_encoding = '0123456789ABCDEFGHJKMNPQRSTVWXYZ'
 | 
						|
)
 | 
						|
 | 
						|
// ulid generates an Unique Lexicographically sortable IDentifier.
 | 
						|
// See https://github.com/ulid/spec .
 | 
						|
// NB: ULIDs can leak timing information, if you make them public, because
 | 
						|
// you can infer the rate at which some resource is being created, like
 | 
						|
// users or business transactions.
 | 
						|
// (https://news.ycombinator.com/item?id=14526173)
 | 
						|
pub fn ulid() string {
 | 
						|
	return ulid_at_millisecond(time.utc().unix_time_milli())
 | 
						|
}
 | 
						|
 | 
						|
// ulid_at_millisecond does the same as `ulid` but takes a custom Unix millisecond timestamp via `unix_time_milli`.
 | 
						|
pub fn ulid_at_millisecond(unix_time_milli u64) string {
 | 
						|
	buflen := 26
 | 
						|
	mut buf := unsafe { malloc(27) }
 | 
						|
	mut t := unix_time_milli
 | 
						|
	mut i := 9
 | 
						|
	for i >= 0 {
 | 
						|
		unsafe {
 | 
						|
			buf[i] = rand.ulid_encoding[t & 0x1F]
 | 
						|
		}
 | 
						|
		t = t >> 5
 | 
						|
		i--
 | 
						|
	}
 | 
						|
	// first rand set
 | 
						|
	mut x := default_rng.u64()
 | 
						|
	i = 10
 | 
						|
	for i < 19 {
 | 
						|
		unsafe {
 | 
						|
			buf[i] = rand.ulid_encoding[x & 0x1F]
 | 
						|
		}
 | 
						|
		x = x >> 5
 | 
						|
		i++
 | 
						|
	}
 | 
						|
	// second rand set
 | 
						|
	x = default_rng.u64()
 | 
						|
	for i < 26 {
 | 
						|
		unsafe {
 | 
						|
			buf[i] = rand.ulid_encoding[x & 0x1F]
 | 
						|
		}
 | 
						|
		x = x >> 5
 | 
						|
		i++
 | 
						|
	}
 | 
						|
	unsafe {
 | 
						|
		buf[26] = 0
 | 
						|
		return buf.vstring_with_len(buflen)
 | 
						|
	}
 | 
						|
}
 |