81 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			81 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			V
		
	
	
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
 | 
						|
// Use of this source code is governed by an MIT license
 | 
						|
// that can be found in the LICENSE file.
 | 
						|
 | 
						|
// Module created by Ulises Jeremias Cornejo Fandos based on
 | 
						|
// the definitions provided in https://scientificc.github.io/cmathl/
 | 
						|
 | 
						|
module factorial
 | 
						|
 | 
						|
import math
 | 
						|
 | 
						|
// factorial calculates the factorial of the provided value.
 | 
						|
pub fn factorial(n f64) f64 {
 | 
						|
	// For a large postive argument (n >= FACTORIALS.len) return max_f64
 | 
						|
 | 
						|
	if n >= factorials_table.len {
 | 
						|
			return math.max_f64
 | 
						|
	}
 | 
						|
 | 
						|
	// Otherwise return n!.
 | 
						|
	if n == f64(i64(n)) && n >= 0.0 {
 | 
						|
		return factorials_table[i64(n)]
 | 
						|
	}
 | 
						|
 | 
						|
	return math.gamma(n + 1.0)
 | 
						|
}
 | 
						|
 | 
						|
// log_factorial calculates the log-factorial of the provided value.
 | 
						|
pub fn log_factorial(n f64) f64 {
 | 
						|
	// For a large postive argument (n < 0) return max_f64
 | 
						|
 | 
						|
	if n < 0 {
 | 
						|
                return -math.max_f64
 | 
						|
	}
 | 
						|
 | 
						|
	// If n < N then return ln(n!).
 | 
						|
 | 
						|
	if n != f64(i64(n)) {
 | 
						|
		return math.log_gamma(n+1)
 | 
						|
	} else if n < log_factorials_table.len {
 | 
						|
                return log_factorials_table[i64(n)]
 | 
						|
        }
 | 
						|
 | 
						|
	// Otherwise return asymptotic expansion of ln(n!).
 | 
						|
 | 
						|
        return log_factorial_asymptotic_expansion(int(n))
 | 
						|
}
 | 
						|
 | 
						|
fn log_factorial_asymptotic_expansion(n int) f64 {
 | 
						|
        m := 6
 | 
						|
        mut term := []f64{}
 | 
						|
        xx := f64((n + 1) * (n + 1))
 | 
						|
        mut xj := f64(n + 1)
 | 
						|
 | 
						|
        log_factorial := log_sqrt_2pi - xj + (xj - 0.5) * math.log(xj)
 | 
						|
 | 
						|
        mut i := 0
 | 
						|
 | 
						|
        for i = 0; i < m; i++ {
 | 
						|
                term << b_numbers[i] / xj
 | 
						|
                xj *= xx
 | 
						|
        }
 | 
						|
 | 
						|
        mut sum := term[m-1]
 | 
						|
 | 
						|
        for i = m - 2; i >= 0; i-- {
 | 
						|
                if math.abs(sum) <= math.abs(term[i]) {
 | 
						|
                        break
 | 
						|
                }
 | 
						|
 | 
						|
                sum = term[i]
 | 
						|
        }
 | 
						|
 | 
						|
        for i >= 0 {
 | 
						|
                sum += term[i]
 | 
						|
                i--
 | 
						|
        }
 | 
						|
 | 
						|
        return log_factorial + sum
 | 
						|
}
 |